

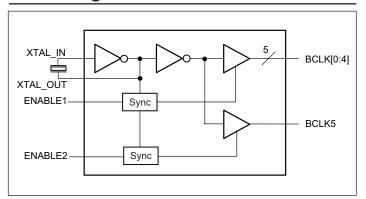


1.5V/1.8V/2.5V/3.3V, 160MHz, Low Skew 1:6 Crystal to LVCMOS Clock Buffer

#### **Features**

- Six low skew outputs: < 80ps
- Crystal oscillator input: 10MHz to 50MHz
- Switching frequency up to 160 MHz
- Fast output rise/fall time (down to 1.8V): < 800ps
- Synchronous output enables
- 1.5V, 1.8V, 2.5V, and 3.3V operation
- Industrial Temperature range: -40°C to +85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact</u> <u>us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/


- Packaging (Pb-free & Green available):
  - 16-pin, 173-mil wide TSSOP (L)

### **Description**

Diodes' PI6C10806B is a low skew, six output, crystal oscillator driver. The device's input range is from 10MHz to 50MHz. If the XTAL\_IN is driven with a signal source, then the input frequency can be as high as 160MHz. The outputs are configured into two groups: a five output and a single output, each with an independent output enable.

The PI6C10806B has a wide range of operating voltages: 1.5V, 1.8V, 2.5V, and 3.3V. This feature, paired with the low output-to-output and part-to-part skew, makes the device ideal for low voltage, low power, high frequency, single ended applications; such as in networking.

### **Block Diagram**

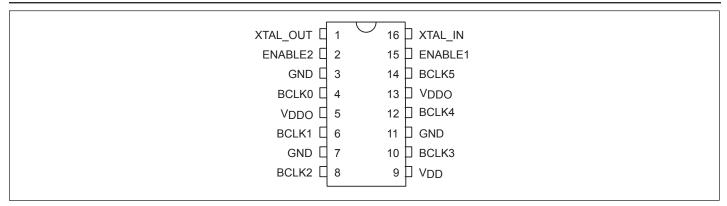


### Truth Table(1)

| Inp             | outs | Outputs   |           |  |
|-----------------|------|-----------|-----------|--|
| ENABLE1 ENABLE2 |      | BCLK[0:4] | BCLK5     |  |
| L               | L    | L         | L         |  |
| L               | Н    | L         | Switching |  |
| Н               | L    | Switching | L         |  |
| Н               | Н    | Switching | Switching |  |

#### Note:

1. H = High Voltage Level, L = Low Voltage Level


#### Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.





# **Pin Configuration**



## **Pin Description**

| Pin#                | Pin Name            | Description                      |
|---------------------|---------------------|----------------------------------|
| 15,<br>2            | ENABLE1,<br>ENABLE2 | Active High Output Enable Inputs |
| 16                  | XTAL_IN             | Crystal interface                |
| 1                   | XTAL_OUT            | Crystal interface                |
| 4, 6, 8, 10, 12, 14 | BCLK[0:5]           | Clock Outputs                    |
| 3, 7, 11            | GND                 | Ground                           |
| 9                   | $V_{\mathrm{DD}}$   | Core Power                       |
| 5, 13               | V <sub>DDO</sub>    | Output Power                     |





### **Absolute Maximum Ratings** (Above which the useful life may be impaired. For user guidelines only, not tested.)

| Storage Temperature65°C to +150°C                       |
|---------------------------------------------------------|
| V <sub>DD</sub> , V <sub>DDO</sub> Voltage0.5V to +3.6V |
| Output Voltage (max. 4.6V)0.5V to V <sub>DD</sub> +0.5V |
| Input Voltage (max 4.6V)0.5V to V <sub>DD</sub> +0.5V   |
| Junction Temperature                                    |

#### Note:

Stresses greater than those listed under MAX-IMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

### **Power Supply DC Characteristics** $(V_{DD}/V_{DDO} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

| Symbols            | Parameters            | <b>Test Conditions</b> | Min.  | Тур | Max.  | Units |
|--------------------|-----------------------|------------------------|-------|-----|-------|-------|
| $V_{\mathrm{DD}}$  | Core Supply Voltage   |                        | 3.135 | 3.3 | 3.465 | V     |
| $V_{\mathrm{DDO}}$ | Output Supply Voltage |                        | 3.135 | 3.3 | 3.465 | V     |
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENABLE1:2 = '00'       |       |     | 10    | mA    |
| $I_{\mathrm{DDO}}$ | Output Supply Current | ENABLE1:2 = '00'       |       |     | 5     | mA    |

### Power Supply DC Characteristics $(V_{DD}/V_{DDO} = 2.5V \pm 5\%, T_A = -40$ °C to 85°C)

| Symbols            | Parameters            | <b>Test Conditions</b> | Min.  | Тур | Max.  | Units |
|--------------------|-----------------------|------------------------|-------|-----|-------|-------|
| $V_{\mathrm{DD}}$  | Core Supply Voltage   |                        | 2.375 | 2.5 | 2.625 | V     |
| $V_{\mathrm{DDO}}$ | Output Supply Voltage |                        | 2.375 | 2.5 | 2.625 | V     |
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENABLE1:2 = '00'       |       |     | 8     | mA    |
| $I_{\mathrm{DDO}}$ | Output Supply Current | ENABLE1:2 = '00'       |       |     | 4     | mA    |

### **Power Supply DC Characteristics** $(V_{DD}/V_{DDO} = 1.8V \pm 0.2V, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

| Symbols            | Parameters            | <b>Test Conditions</b> | Min. | Тур | Max. | Units |
|--------------------|-----------------------|------------------------|------|-----|------|-------|
| $V_{\mathrm{DD}}$  | Core Supply Voltage   |                        | 1.6  | 1.8 | 2.0  | V     |
| $V_{\mathrm{DDO}}$ | Output Supply Voltage |                        | 1.6  | 1.8 | 2.0  | V     |
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENABLE1:2 = '00'       |      |     | 5    | mA    |
| $I_{\mathrm{DDO}}$ | Output Supply Current | ENABLE1:2 = '00'       |      |     | 3    | mA    |

### **Power Supply DC Characteristics** $(V_{DD}/V_{DDO} = 1.5V \pm 5\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

| Symbols            | Parameters            | Test Conditions  | Min.  | Тур | Max.  | Units |
|--------------------|-----------------------|------------------|-------|-----|-------|-------|
| $V_{\mathrm{DD}}$  | Core Supply Voltage   |                  | 1.425 | 1.5 | 1.575 | V     |
| $V_{\mathrm{DDO}}$ | Output Supply Voltage |                  | 1.425 | 1.5 | 1.575 | V     |
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENABLE1:2 = '00' |       |     | 5     | mA    |
| $I_{\mathrm{DDO}}$ | Output Supply Current | ENABLE1:2 = '00' |       |     | 3     | mA    |

### **Power Supply DC Characteristics** ( $V_{DD} = 3.3V \pm 5\%$ , $T_A = -40$ °C to 85°C)

| Symbols           | Parameters           |                  | Test Conditions                                   | Min. | Тур | Max. | Units |
|-------------------|----------------------|------------------|---------------------------------------------------|------|-----|------|-------|
|                   |                      |                  | $V_{\rm DDO} = 2.5 \mathrm{V} \pm 5\%$            |      |     |      |       |
| $I_{\mathrm{DD}}$ | Power Supply Current | ENABLE1:2 = '00' | $V_{\rm DDO} = 1.8 \mathrm{V} \pm 0.2 \mathrm{V}$ |      |     | 10   | mA    |
|                   |                      |                  | $V_{\rm DDO} = 1.5 \text{V} \pm 5\%$              |      |     |      |       |





### Power Supply DC Characteristics Cont.

| Symbols                        | Parameters            |                  | Test Conditions                                   | Min. | Тур | Max. | Units |
|--------------------------------|-----------------------|------------------|---------------------------------------------------|------|-----|------|-------|
|                                |                       |                  | $V_{\rm DDO} = 2.5 \text{V} \pm 5\%$              |      |     | 4    |       |
| I <sub>DDO</sub> Output Supply | Output Supply Current | ENABLE1:2 = '00' | $V_{\rm DDO} = 1.8 \mathrm{V} \pm 0.2 \mathrm{V}$ |      |     | 3    | mA    |
|                                |                       |                  | $V_{\rm DDO} = 1.5V \pm 5\%$                      |      |     | 3    |       |

# Power Supply DC Characteristics ( $V_{DD}$ = 2.5V ± 5%, $T_A$ = -40°C to 85°C)

| Symbols            | Parameters            |                | Test Conditions                                   | Min. | Тур | Max. | Units |
|--------------------|-----------------------|----------------|---------------------------------------------------|------|-----|------|-------|
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENIADIE1 2 IOO | $V_{\rm DDO} = 1.8 \mathrm{V} \pm 0.2 \mathrm{V}$ |      |     | 0    |       |
|                    | Power Supply Current  | ENABLE1;2 = 00 | $V_{\rm DDO} = 1.5V \pm 5\%$                      |      |     | 0    |       |
| $I_{\mathrm{DDO}}$ | 0 + +6 +1 6 +         | ENIADIE1 2 IOO | $V_{\rm DDO} = 1.8V \pm 0.2V$                     |      |     | 3    | mA    |
|                    | Output Supply Current | ENABLE1:2 = 00 | $V_{\rm DDO} = 1.5V \pm 5\%$                      |      |     |      |       |

## **Power Supply DC Characteristics** ( $V_{DD} = 1.8V \pm 0.2V$ , $T_A = -40$ °C to 85°C)

| Symbols            | Parameters            |                  | Test Conditions              | Min. | Тур | Max. | Units |
|--------------------|-----------------------|------------------|------------------------------|------|-----|------|-------|
| $I_{\mathrm{DD}}$  | Power Supply Current  | ENABLE1:2 = '00' | $V_{\rm DDO} = 1.5V \pm 5\%$ |      |     | 5    | A     |
| $I_{\mathrm{DDO}}$ | Output Supply Current | ENABLE1:2 = '00' | $V_{\rm DDO} = 1.5V \pm 5\%$ |      |     | 3    | mA    |

# I/O DC Characteristics ( $T_A = -40$ °C to 85°C)

| Symbols         | Parai                | neters                | <b>Test Conditions</b>                                       | Min.                   | Тур | Max.                     | Units |
|-----------------|----------------------|-----------------------|--------------------------------------------------------------|------------------------|-----|--------------------------|-------|
|                 |                      |                       | $V_{\rm DD} = 3.3 V \pm 5\%$                                 | 2                      |     | $V_{\mathrm{DDO}} + 0.3$ | V     |
| 37              | Input High           | ENABLE 1,             | $V_{\rm DD} = 2.5 V \pm 5\%$                                 | 1.7                    |     | $V_{\mathrm{DDO}} + 0.3$ | V     |
| $V_{IH}$        | Voltage              | ENABLE 2              | $V_{\rm DD} = 1.8 V \pm 0.2 V$                               | 0.65* V <sub>DDO</sub> |     | $V_{\mathrm{DDO}} + 0.3$ | V     |
|                 |                      |                       | $V_{\rm DD} = 1.5 V \pm 5\%$                                 | 0.65* V <sub>DDO</sub> |     | $V_{\mathrm{DDO}} + 0.3$ | V     |
|                 |                      |                       | $V_{\rm DD} = 3.3 { m V} \pm 5 { m \%}$                      | -0.3                   |     | 0.8                      | V     |
| 3.7             | Input Low<br>Voltage | ENABLE 1,<br>ENABLE 2 | $V_{\rm DD} = 2.5 V \pm 5\%$                                 | -0.3                   |     | 0.7                      | V     |
| $V_{IL}$        |                      |                       | $V_{\rm DD} = 1.8 V \pm 0.2 V$                               | -0.3                   |     | 0.35* V <sub>DDO</sub>   | V     |
|                 |                      |                       | $V_{\rm DD} = 1.5 V \pm 5\%$                                 | -0.3                   |     | 0.35* V <sub>DDO</sub>   | V     |
|                 |                      |                       | $V_{\rm DDO} = 3.3 V \pm 5\%$ <sup>(1)</sup>                 | 2.6                    |     |                          | V     |
|                 |                      |                       | $V_{\rm DDO} = 2.5 V \pm 5\%;$<br>$I_{\rm OH} = -1 {\rm mA}$ | 2                      |     |                          | V     |
| V <sub>OH</sub> | Output High V        | oltage                | $V_{\rm DDO} = 2.5 V \pm 5\%$ <sup>(1)</sup>                 | 1.8                    |     |                          | V     |
|                 |                      |                       | $V_{\rm DDO} = 1.8V \pm 0.2V^{(1)}$                          | V <sub>DDO</sub> - 0.3 |     |                          | V     |
|                 |                      |                       | $V_{\rm DDO} = 1.5 V \pm 5\%$ <sup>(1)</sup>                 | V <sub>DDO</sub> - 0.3 |     |                          | V     |

4





### I/O DC Characteristics Cont.

| Symbols          | Parameters                                                              | <b>Test Conditions</b>                           | Min. | Тур | Max. | Units |
|------------------|-------------------------------------------------------------------------|--------------------------------------------------|------|-----|------|-------|
| V <sub>OL</sub>  |                                                                         | $V_{\rm DD} = 3.3 V \pm 5\%$ <sup>(1)</sup>      |      |     | 0.5  | V     |
|                  |                                                                         | $V_{\rm DDO}$ = 2.5V ± 5%;<br>$I_{\rm OL}$ = 1mA |      |     | 0.4  | V     |
|                  | Output Low Voltage                                                      | $V_{\rm DDO} = 2.5 V \pm 5\%$ <sup>(1)</sup>     |      |     | 0.45 | V     |
|                  |                                                                         | $V_{\rm DDO} = 1.8V \pm 0.2V$ (1)                |      |     | 0.35 | V     |
|                  |                                                                         | $V_{\rm DDO} = 1.5 V \pm 5\%$ <sup>(1)</sup>     |      |     |      | V     |
| R <sub>OUT</sub> |                                                                         | $V_{\rm DDO} = 3.3 \text{ V}$                    |      | 7   |      | Ω     |
|                  | Output Impedance $ V_{DDO} = 2.5 \text{ V} $ $V_{DDO} = 1.8 \text{ V} $ |                                                  | 8    |     | Ω    |       |
|                  |                                                                         | $V_{\rm DDO} = 1.8 \text{ V}$                    |      | 13  |      | Ω     |
|                  |                                                                         | $V_{\rm DDO} = 1.5 \text{ V}$                    |      | 20  |      | Ω     |

**Notes:** 1.  $I_{OH} = -8mA$ ,  $I_{OL} = 8mA$ .

## AC Characteristics (Over Operating Range: $V_{DD} = 3.3V \pm 5\%$ , $T_A = -40^{\circ}$ to $85^{\circ}$ C)

| Parameters                            | Description                                                                        | Test Conditions <sup>(1)</sup> |                                                      | Min. | Тур   | Max. | Units  |
|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|------|-------|------|--------|
|                                       |                                                                                    | Using Crystal                  |                                                      | 10   |       | 50   |        |
|                                       |                                                                                    |                                | $V_{\rm DDO}$ = 3.3V±5%                              |      |       |      |        |
| $f_{OUT}$                             | Output Frequency                                                                   | External Clock <sup>(2)</sup>  | $V_{\rm DDO}$ = 2.5V±5%                              | 0    |       | 160  | MHz    |
|                                       |                                                                                    | External Clock                 | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ |      |       |      |        |
|                                       |                                                                                    |                                | $V_{\rm DDO} = 1.5 \text{V} \pm 5\%$                 | 0    |       | 100  |        |
|                                       |                                                                                    |                                | $V_{\rm DDO} = 3.3V \pm 5\%$                         |      |       | 160  |        |
|                                       | Outunt Duty Couls                                                                  | O.V. /2                        | $V_{\mathrm{DDO}} = 2.5 \mathrm{V} \pm 5\%$          | 47   |       |      | %      |
| $t_{DC}$                              | Output Duty Cycle                                                                  | @ V <sub>DDO</sub> /2          | $V_{\rm DDO}$ = 1.8V±0.2V                            |      |       |      |        |
|                                       |                                                                                    |                                | $V_{\rm DDO}$ = 1.5V±5%                              | 45   |       | 55   |        |
|                                       | CLKn Rise/Fall Time                                                                | 20% to 80%                     | $V_{\rm DDO} = 3.3 \text{V} \pm 5\%$                 | 150  |       | 800  |        |
|                                       |                                                                                    |                                | $V_{\mathrm{DDO}} = 2.5 \mathrm{V} \pm 5\%$          | 200  |       | 800  | ps     |
| t <sub>R</sub> /t <sub>F</sub>        |                                                                                    |                                | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | 200  |       | 800  |        |
|                                       |                                                                                    |                                | $V_{\rm DDO} = 1.5 \text{V} \pm 5\%$                 | 600  |       | 1300 | 1      |
|                                       |                                                                                    | 25MHz @ Integra-<br>tion Range | $V_{\rm DDO} = 3.3 \text{V} \pm 5\%$                 |      | 0.098 |      |        |
| DMC                                   | D 1 DMCD1 I''                                                                      |                                | $V_{\mathrm{DDO}} = 2.5 \mathrm{V} \pm 5\%$          |      | 0.112 |      |        |
| RMS                                   | Random RMS Phase Jitter                                                            | 100Hz - 1MHz                   | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ |      | 0.233 |      | ps     |
|                                       |                                                                                    | 100HZ - 1MHZ                   | $V_{\rm DDO} = 1.5 \text{V} \pm 5\%$                 |      | 0.277 |      |        |
| t <sub>SK(O)</sub> <sup>(3)</sup>     | Output to Output Skew between any two outputs of the same device @ same transition | @V <sub>1</sub>                | <sub>DDO</sub> /2                                    |      |       | 80   | ps     |
| t <sub>DIS</sub> ,t <sub>EN</sub> (4) | Output Enable/Disable                                                              | @V <sub>DDO</sub> /2           |                                                      |      |       | 4    | cycles |

### **Notes:**

- 1. Unless noted otherwise, all parameters are tested with xtal @  $f \le Fxtal_max$ ,; outputs are terminated @  $50\Omega$  to  $V_{DDO}/2$ , see waveforms.
- $2. \ \ External \ clock \ source \ is \ driving \ XTAL\_IN \ input$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.





# AC Characteristics ( $V_{DD} = 2.5V \pm 5\%$ , $T_A = -40$ °C to 85°C)

| Parameters                                       | Description                                                                        | Test Conditions <sup>(1)</sup> |                                                      | Min. | Тур   | Max. | Units  |
|--------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|------|-------|------|--------|
|                                                  |                                                                                    | Using Crystal                  |                                                      | 10   |       | 50   | MILE   |
| £                                                | Output Engavenary                                                                  |                                | $V_{\rm DDO}$ = 2.5V±5%                              | 0    | 160   |      |        |
| $f_{OUT}$                                        | Output Frequency                                                                   | External Clock <sup>(2)</sup>  | $V_{\rm DDO}$ = 1.8V±0.2V                            | 0    |       | 160  | MHz    |
|                                                  |                                                                                    |                                | $V_{\rm DDO}$ = 1.5V±5%                              | 0    |       | 100  |        |
|                                                  |                                                                                    |                                | $V_{\rm DDO}$ = 2.5V±5%                              | 47   |       | 53   |        |
| $t_{DC}$                                         | Output Duty Cycle                                                                  | @ V <sub>DDO</sub> /2          | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | 47   | 7     | 53   | %      |
|                                                  |                                                                                    |                                | $V_{\rm DDO}$ = 1.5V±5%                              | 45   |       | 55   |        |
| $t_{ m R}/t_{ m F}$                              | CLKn Rise/Fall Time                                                                | 20% to 80%                     | $V_{\rm DDO}$ = 2.5V±5%                              | 150  |       | 800  |        |
|                                                  |                                                                                    |                                | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | 200  |       | 900  | ps     |
|                                                  |                                                                                    |                                | $V_{\rm DDO}$ = 1.5V±5%                              | 700  |       | 1400 |        |
|                                                  | Random RMS Phase Jitter                                                            | 25MHz @ Integra-               | @ Integra- $V_{DDO} = 2.5V \pm 5\%$                  |      | 0.112 |      |        |
| RMS                                              |                                                                                    | tion Range                     | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ |      | 0.233 |      | ps     |
|                                                  |                                                                                    | 100Hz - 1MHz                   | $V_{\rm DDO}$ = 1.5V±5%                              |      | 0.277 |      |        |
| t <sub>SK(O)</sub> <sup>(3)</sup>                | Output to Output Skew between any two outputs of the same device @ same transition | @V <sub>DDO</sub> /2           |                                                      |      |       | 80   | ps     |
| t <sub>DIS</sub> ,t <sub>EN</sub> <sup>(4)</sup> | Output Enable/Disable                                                              | @V <sub>DDO</sub> /2           |                                                      |      |       | 4    | cycles |

### Notes:

- 1. Unless noted otherwise, all parameters are tested with xtal @  $f \le Fxtal_max$ ,; outputs are terminated @  $50\Omega$  to  $V_{DDO}/2$ , see waveforms.
- 2. External clock source is driving XTAL\_IN input
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.





### AC Characteristics ( $V_{DD} = 1.8V \pm 0.2V$ , $T_A = -40$ °C to 85°C)

| Parameters                            | Description                                                                        | Test Conditions <sup>(1)</sup> |                                                      | Min.    | Тур   | Max. | Units   |
|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|---------|-------|------|---------|
|                                       |                                                                                    | Using Crystal                  |                                                      | 10      |       | 50   |         |
| $f_{OUT}$                             | Output Frequency                                                                   | F 1 (2)                        | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | 0       |       | 160  | <b></b> |
|                                       |                                                                                    | External Clock <sup>(2)</sup>  | $V_{\rm DDO}$ = 1.5V±5%                              | 0       |       | 100  |         |
|                                       | 0 + + D + C 1                                                                      | O. V. 12                       | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | 47      |       | 53   | - %     |
| $t_{DC}$                              | Output Duty Cycle                                                                  | @ V <sub>DDO</sub> /2          | $V_{\rm DDO}$ = 1.5V±5%                              | 45      |       | 55   |         |
| t <sub>R</sub> /t <sub>F</sub>        | CI V., D:/F-11 T:                                                                  | 200/ +- 000/                   | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ | .2V 150 |       | 800  | ps      |
|                                       | CLKn Rise/Fall Time                                                                | 20% to 80%                     | $V_{\rm DDO}$ = 1.5V±5%                              | 800     |       | 1500 |         |
|                                       |                                                                                    | 25MHz @ Integra-               | $V_{\mathrm{DDO}} = 1.8\mathrm{V} \pm 0.2\mathrm{V}$ |         | 0.233 |      |         |
| RMS                                   | Random RMS Phase Jitter                                                            | tion Range<br>100Hz - 1MHz     | V <sub>DDO</sub> = 1.5V±5%                           |         | 0.277 |      | ps      |
| t <sub>SK(O)</sub> <sup>(3)</sup>     | Output to Output Skew between any two outputs of the same device @ same transition | @V <sub>DDO</sub> /2           |                                                      |         |       | 80   | ps      |
| t <sub>DIS</sub> ,t <sub>EN</sub> (4) | Output Enable/Disable                                                              | @V <sub>DDO</sub> /2           |                                                      |         |       | 4    | cycles  |

#### Notes:

All parameters measured at  $f=f_{MAX}$  using a crystal input unless noted otherwise.

Outputs are terminated at  $50\Omega$  to  $V_{DDO}$  /2.

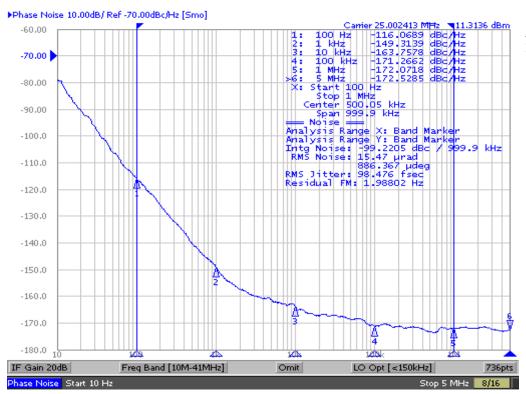
- 1. XTAL\_IN can be overdriven relatively to a signal a crystal provides.
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at  $V_{DDO}$  /2.
- 3. These parameters are guaranteed, but not tested.
- 4. This parameter is defined in accordance with JEDEC Standard 65.

### AC Characteristics ( $V_{DD} = 1.5V \pm 5\%$ , $T_A = -40$ °C to 85°C)

| Parameters                                       | Description                                                                                | Test Conditions <sup>(1)</sup>                 |                            | Min. | Тур   | Max. | Units  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|------|-------|------|--------|
| C                                                | Ontrod Francisco                                                                           | Using                                          | Crystal                    | 10   |       | 50   | MII-   |
| $f_{OUT}$                                        | Output Frequency                                                                           | Externa                                        | l Clock <sup>(2)</sup>     | 0    |       | 100  | MHz    |
| $t_{DC}$                                         | Output Duty Cycle                                                                          | @ V                                            | DDO/2                      | 45   |       | 55   | %      |
| t <sub>R</sub> /t <sub>F</sub>                   | CLKn Rise/Fall Time                                                                        | 20% to 80%                                     | $V_{\rm DDO}$ = 1.5V±5%    | 800  |       | 1500 | ps     |
| RMS                                              | Random RMS Phase Jitter                                                                    | 25MHz @ Integra-<br>tion Range<br>100Hz - 1MHz | V <sub>DDO</sub> = 1.5V±5% |      | 0.277 |      | ps     |
| t <sub>SK(O)</sub> <sup>(3)</sup>                | Output to Output Skew be-<br>tween any two outputs of the<br>same device @ same transition | @V <sub>DDO</sub> /2                           |                            |      |       | 80   | ps     |
| t <sub>DIS</sub> ,t <sub>EN</sub> <sup>(4)</sup> | Output Enable/Disable                                                                      | @V <sub>DDO</sub> /2                           |                            |      |       | 4    | cycles |

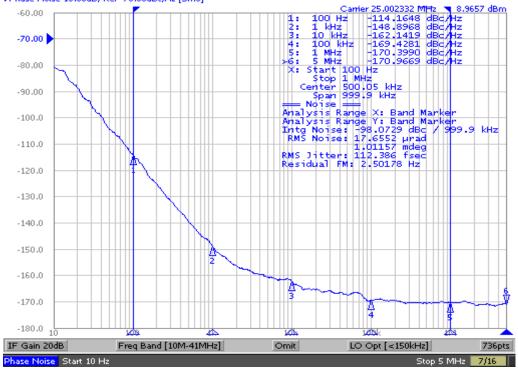
#### Notes:

All parameters measured at  $f=f_{MAX}$  using a crystal input unless noted otherwise.


Outputs are terminated at  $50\Omega$  to  $V_{DDO}$  /2.

- 1. XTAL\_IN can be overdriven relatively to a signal a crystal provides.
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at  $V_{\rm DDO}/2$ .
- 3. These parameters are guaranteed, but not tested.
- 4. This parameter is defined in accordance with JEDEC Standard 65.

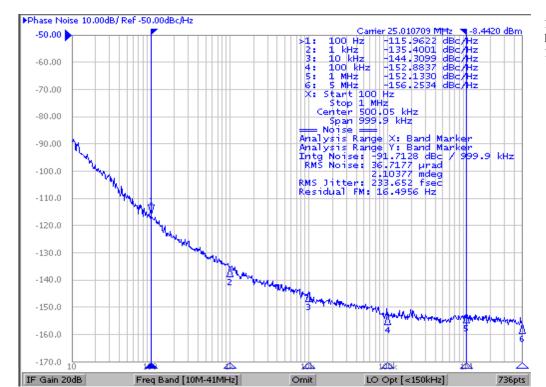




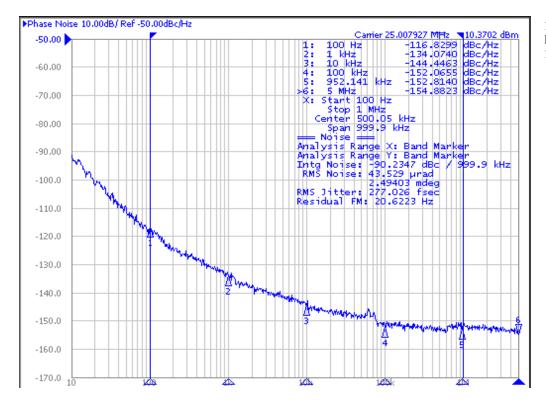

### **Jitter** (typical phase noise at 25MHz)



3.3V Core/3.3V Output RMS phase jitter (Random) 100Hz to 1MHz =0.098ps (typical)





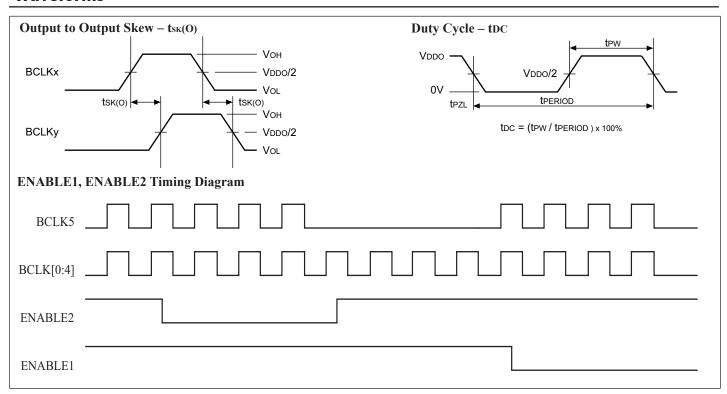


2.5V Core/2.5V Output RMS phase jitter (Random) 100Hz to 1MHz =0.112ps (typical)



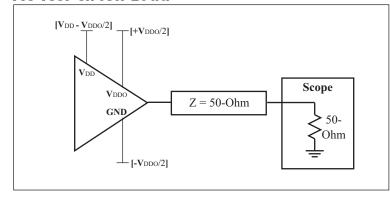




1.8V Core/1.8V Output RS phase jitter (Random) 100Hz to 1MHz =0.233ps (typical)




1.5V Core/1.5V Output RMS phase jitter (Random) 100Hz to 1MHz =0.277ps (typical)






### **Waveforms**



### **AC Test Circuit Load**



## $V_{DD}/V_{DDO} = 1.5V \pm 5\%,$ $1.8V \pm 0.2V,$

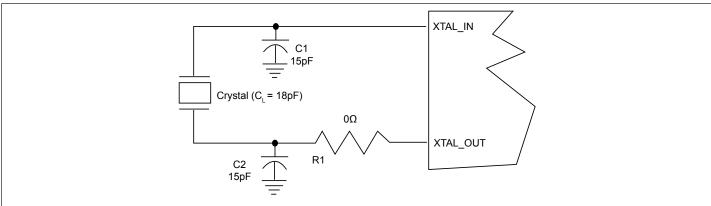
 $2.5V \pm 5\%$ ,  $3.3V \pm 5\%$ 

# **Crystal Characteristic**

| Parameters         | Description                  | Min | Тур | Max. | Units |
|--------------------|------------------------------|-----|-----|------|-------|
| OSCMODE            | Mode of Oscillation          | I   |     |      |       |
| FREQ               | Frequency                    | 10  | 25  | 50   | MHz   |
| ESR <sup>(1)</sup> | Equivalent Series Resistance | 30  |     | 50   | Ohm   |
| CLOAD              | Load Capacitance             |     | 18  |      | pF    |
| CSHUNT             | Shunt Capacitance            |     |     | 7    | pF    |
| DRIVE level        |                              |     |     | 1    | mW    |

Note: 1. ESR value is dependent upon frequency of oscillation





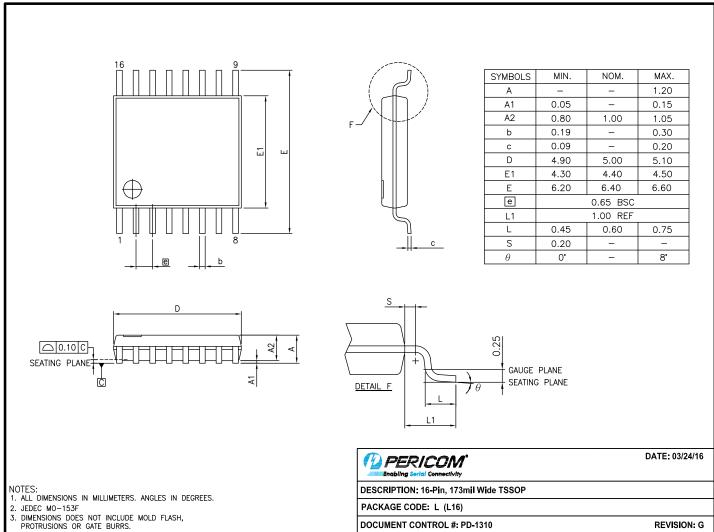

# **Application Notes**

### **Crystal Circuit Connection**

The following diagram shows PI6C10806B crystal circuit connection with a parallel crystal. For the  $C_L$ =18pF crystal, it is suggested to use C1=15pF, C2=15pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts. R1 is not recommended.

## **Crystal Oscillator Circuit**




## **Part Marking**







## Packaging Mechanical: 16-TSSOP (L)



16-0061

#### For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packag$ 

### **Ordering Information**

| Ordering Code | Package Code | Package Description         |
|---------------|--------------|-----------------------------|
| PI6C10806BLEX | L            | 16-Pin, 173mil Wide (TSSOP) |

#### Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- $2. \ See \ https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.$
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel





#### IMPORTANT NOTICE

- DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/ terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

13

Copyright © 2021 Diodes Incorporated

www.diodes.com