
December 2022 RM0041 Rev 6 1/709

1

RM0041
Reference manual

STM32F100xx
advanced Arm®-based 32-bit MCUs

Introduction

This document is addressed to application developers. It provides complete information on
how to use the STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB,
STM32F100xC, STM32F100xD, and STM32F100xE microcontroller memory and
peripherals.

These devices (STM32F100 Value Line) are a family of microcontrollers with different
memory sizes, packages and peripherals, and are referred to as STM32F100xx throughout
the document, unless otherwise specified.

For ordering information, mechanical and electrical device characteristics, refer to the
datasheets. For information on programming, erasing and protection of the internal flash
memory, refer to PM0063 “STM32F100xx value line Flash programming”.

For information on the Arm® Cortex®-M3 core, refer to the Cortex®-M3 Technical Reference
Manual.

Related documents

Available from www.arm.com:

• Cortex®-M3 Technical Reference Manual

Available from www.st.com:

• STM32F100xx datasheets

• STM32F100xx flash programming manual

www.st.com

http://www.st.com

Contents RM0041

2/709 RM0041 Rev 6

Contents

1 Documentation conventions . 32

1.1 List of abbreviations for registers . 32

1.2 Glossary . 32

1.3 Peripheral availability . 32

1.4 General information . 33

2 Memory and bus architecture . 34

2.1 System architecture . 34

2.2 Memory organization . 36

2.3 Memory map . 37

2.3.1 Embedded SRAM . 40

2.3.2 Bit banding . 41

2.3.3 Embedded flash memory . 41

2.4 Boot configuration . 45

3 CRC calculation unit . 47

3.1 CRC introduction . 47

3.2 CRC main features . 47

3.3 CRC functional description . 48

3.4 CRC registers . 48

3.4.1 Data register (CRC_DR) . 48

3.4.2 Independent data register (CRC_IDR) . 48

3.4.3 Control register (CRC_CR) . 49

3.4.4 CRC register map . 49

4 Power control (PWR) . 50

4.1 Power supplies . 50

4.1.1 Independent A/D and D/A converter supply and reference voltage 51

4.1.2 Battery backup domain . 51

4.1.3 Voltage regulator . 52

4.2 Power supply supervisor . 52

4.2.1 Power on reset (POR)/power down reset (PDR) 52

4.2.2 Programmable voltage detector (PVD) . 53

RM0041 Rev 6 3/709

RM0041 Contents

21

4.3 Low-power modes . 55

4.3.1 Slowing down system clocks . 55

4.3.2 Peripheral clock gating . 56

4.3.3 Sleep mode . 56

4.3.4 Stop mode . 57

4.3.5 Standby mode . 59

4.3.6 Auto-wakeup (AWU) from low-power mode . 60

4.4 Power control registers . 60

4.4.1 Power control register (PWR_CR) . 60

4.4.2 Power control/status register (PWR_CSR) . 62

4.4.3 PWR register map . 63

5 Backup registers (BKP) . 64

5.1 BKP introduction . 64

5.2 BKP main features . 64

5.3 BKP functional description . 65

5.3.1 Tamper detection . 65

5.3.2 RTC calibration . 65

5.4 BKP registers . 66

5.4.1 Backup data register x (BKP_DRx) (x = 1 ..20) 66

5.4.2 RTC clock calibration register (BKP_RTCCR) . 66

5.4.3 Backup control register (BKP_CR) . 67

5.4.4 Backup control/status register (BKP_CSR) . 67

5.4.5 BKP register map . 69

6 Reset and clock control (RCC) . 71

6.1 Reset . 71

6.1.1 System reset . 71

6.1.2 Power reset . 72

6.1.3 Backup domain reset . 72

6.2 Clocks . 72

6.2.1 HSE clock . 75

6.2.2 HSI clock . 76

6.2.3 PLL . 76

6.2.4 LSE clock . 77

6.2.5 LSI clock . 77

Contents RM0041

4/709 RM0041 Rev 6

6.2.6 System clock (SYSCLK) selection . 78

6.2.7 Clock security system (CSS) . 78

6.2.8 RTC clock . 78

6.2.9 Watchdog clock . 79

6.2.10 Clock-out capability . 79

6.3 RCC registers . 80

6.3.1 Clock control register (RCC_CR) . 80

6.3.2 Clock configuration register (RCC_CFGR) . 82

6.3.3 Clock interrupt register (RCC_CIR) . 84

6.3.4 APB2 peripheral reset register (RCC_APB2RSTR) 86

6.3.5 APB1 peripheral reset register (RCC_APB1RSTR) 88

6.3.6 AHB peripheral clock enable register (RCC_AHBENR) 90

6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR) 92

6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR) 94

6.3.9 Backup domain control register (RCC_BDCR) 97

6.3.10 Control/status register (RCC_CSR) . 98

6.3.11 Clock configuration register2 (RCC_CFGR2) 100

6.3.12 RCC register map . 101

7 General-purpose and alternate-function I/Os
(GPIOs and AFIOs) . 102

7.1 GPIO functional description . 102

7.1.1 General-purpose I/O (GPIO) . 104

7.1.2 Atomic bit set or reset . 104

7.1.3 External interrupt/wakeup lines . 105

7.1.4 Alternate functions (AF) . 105

7.1.5 Software remapping of I/O alternate functions 105

7.1.6 GPIO locking mechanism . 105

7.1.7 Input configuration . 106

7.1.8 Output configuration . 106

7.1.9 Alternate function configuration . 107

7.1.10 Analog configuration . 108

7.1.11 GPIO configurations for device peripherals . 109

7.2 GPIO registers .113

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G) 113

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G) 114

7.2.3 Port input data register (GPIOx_IDR) (x=A..G) 114

RM0041 Rev 6 5/709

RM0041 Contents

21

7.2.4 Port output data register (GPIOx_ODR) (x=A..G) 115

7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G) 115

7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G) 116

7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G) 116

7.3 Alternate function I/O and debug configuration (AFIO) 117

7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15 117

7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1 117

7.3.3 JTAG/SWD alternate function remapping . 118

7.3.4 Timer alternate function remapping . 118

7.3.5 USART alternate function remapping . 121

7.3.6 I2C1 alternate function remapping . 122

7.3.7 SPI1 alternate function remapping . 122

7.3.8 CEC remap . 122

7.4 AFIO registers . 123

7.4.1 Event control register (AFIO_EVCR) . 123

7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR) 124

7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1) 126

7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2) 126

7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3) 127

7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4) 127

7.4.7 AF remap and debug I/O configuration register (AFIO_MAPR2) 128

7.5 GPIO and AFIO register maps . 130

8 Interrupts and events . 132

8.1 Nested vectored interrupt controller (NVIC) . 132

8.1.1 SysTick calibration value register . 132

8.1.2 Interrupt and exception vectors . 132

8.2 External interrupt/event controller (EXTI) . 136

8.2.1 Main features . 136

8.2.2 Block diagram . 136

8.2.3 Wakeup event management . 137

8.2.4 Functional description . 137

8.2.5 External interrupt/event line mapping . 138

8.3 EXTI registers . 140

8.3.1 Interrupt mask register (EXTI_IMR) . 140

8.3.2 Event mask register (EXTI_EMR) . 140

Contents RM0041

6/709 RM0041 Rev 6

8.3.3 Rising trigger selection register (EXTI_RTSR) 141

8.3.4 Falling trigger selection register (EXTI_FTSR) 141

8.3.5 Software interrupt event register (EXTI_SWIER) 142

8.3.6 Pending register (EXTI_PR) . 142

8.3.7 EXTI register map . 143

9 Direct memory access controller (DMA) . 144

9.1 DMA introduction . 144

9.2 DMA main features . 144

9.3 DMA functional description . 146

9.3.1 DMA transactions . 146

9.3.2 Arbiter . 147

9.3.3 DMA channels . 147

9.3.4 Programmable data width, data alignment and endians 149

9.3.5 Error management . 150

9.3.6 Interrupts . 150

9.3.7 DMA request mapping . 150

9.4 DMA registers . 154

9.4.1 DMA interrupt status register (DMA_ISR) . 154

9.4.2 DMA interrupt flag clear register (DMA_IFCR) 155

9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number) . 156

9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number) . 157

9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number) . 158

9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number) . 158

9.4.7 DMA register map . 159

10 Analog-to-digital converter (ADC) . 162

10.1 ADC introduction . 162

10.2 ADC main features . 162

10.3 ADC functional description . 163

10.3.1 ADC on-off control . 164

10.3.2 ADC clock . 164

10.3.3 Channel selection . 164

10.3.4 Single conversion mode . 165

RM0041 Rev 6 7/709

RM0041 Contents

21

10.3.5 Continuous conversion mode . 165

10.3.6 Timing diagram . 165

10.3.7 Analog watchdog . 166

10.3.8 Scan mode . 167

10.3.9 Injected channel management . 167

10.3.10 Discontinuous mode . 168

10.4 Calibration . 169

10.5 Data alignment . 170

10.6 Channel-by-channel programmable sample time 171

10.7 Conversion on external trigger . 171

10.8 DMA request . 172

10.9 Temperature sensor . 172

10.10 ADC interrupts . 174

10.11 ADC registers . 175

10.11.1 ADC status register (ADC_SR) . 175

10.11.2 ADC control register 1 (ADC_CR1) . 176

10.11.3 ADC control register 2 (ADC_CR2) . 177

10.11.4 ADC sample time register 1 (ADC_SMPR1) . 180

10.11.5 ADC sample time register 2 (ADC_SMPR2) . 181

10.11.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) . . 181

10.11.7 ADC watchdog high threshold register (ADC_HTR) 182

10.11.8 ADC watchdog low threshold register (ADC_LTR) 182

10.11.9 ADC regular sequence register 1 (ADC_SQR1) 183

10.11.10 ADC regular sequence register 2 (ADC_SQR2) 184

10.11.11 ADC regular sequence register 3 (ADC_SQR3) 185

10.11.12 ADC injected sequence register (ADC_JSQR) 186

10.11.13 ADC injected data register x (ADC_JDRx) (x= 1..4) 187

10.11.14 ADC regular data register (ADC_DR) . 187

10.11.15 ADC register map . 188

11 Digital-to-analog converter (DAC) . 190

11.1 DAC introduction . 190

11.2 DAC main features . 190

11.3 DAC functional description . 192

11.3.1 DAC channel enable . 192

11.3.2 DAC output buffer enable . 192

Contents RM0041

8/709 RM0041 Rev 6

11.3.3 DAC data format . 192

11.3.4 DAC conversion . 193

11.3.5 DAC output voltage . 194

11.3.6 DAC trigger selection . 194

11.3.7 DMA request . 195

11.3.8 Noise generation . 195

11.3.9 Triangle-wave generation . 196

11.4 Dual DAC channel conversion . 197

11.4.1 Independent trigger without wave generation 198

11.4.2 Independent trigger with single LFSR generation 198

11.4.3 Independent trigger with different LFSR generation 198

11.4.4 Independent trigger with single triangle generation 199

11.4.5 Independent trigger with different triangle generation 199

11.4.6 Simultaneous software start . 199

11.4.7 Simultaneous trigger without wave generation 200

11.4.8 Simultaneous trigger with single LFSR generation 200

11.4.9 Simultaneous trigger with different LFSR generation 200

11.4.10 Simultaneous trigger with single triangle generation 201

11.4.11 Simultaneous trigger with different triangle generation 201

11.5 DAC registers . 202

11.5.1 DAC control register (DAC_CR) . 202

11.5.2 DAC software trigger register (DAC_SWTRIGR) 205

11.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 205

11.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1) . 206

11.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1) . 206

11.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2) . 207

11.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2) . 207

11.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . 207

11.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . 208

11.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD) . 208

RM0041 Rev 6 9/709

RM0041 Contents

21

11.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD) . 209

11.5.12 DAC channel1 data output register (DAC_DOR1) 209

11.5.13 DAC channel2 data output register (DAC_DOR2) 209

11.5.14 DAC status register (DAC_SR) . 210

11.5.15 DAC register map . 210

12 Advanced-control timer (TIM1) . 212

12.1 TIM1 introduction . 212

12.2 TIM1 main features . 213

12.3 TIM1 functional description . 215

12.3.1 Time-base unit . 215

12.3.2 Counter modes . 217

12.3.3 Repetition counter . 226

12.3.4 Clock selection . 228

12.3.5 Capture/compare channels . 231

12.3.6 Input capture mode . 234

12.3.7 PWM input mode . 235

12.3.8 Forced output mode . 235

12.3.9 Output compare mode . 236

12.3.10 PWM mode . 237

12.3.11 Complementary outputs and dead-time insertion 240

12.3.12 Using the break function . 242

12.3.13 Clearing the OCxREF signal on an external event 245

12.3.14 6-step PWM generation . 246

12.3.15 One-pulse mode . 247

12.3.16 Encoder interface mode . 248

12.3.17 Timer input XOR function . 251

12.3.18 Interfacing with Hall sensors . 251

12.3.19 TIMx and external trigger synchronization . 253

12.3.20 Timer synchronization . 256

12.3.21 Debug mode . 256

12.4 TIM1 registers . 257

12.4.1 TIM1 control register 1 (TIMx_CR1) . 257

12.4.2 TIM1 control register 2 (TIMx_CR2) . 258

12.4.3 TIM1 slave mode control register (TIMx_SMCR) 261

12.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER) 263

Contents RM0041

10/709 RM0041 Rev 6

12.4.5 TIM1 status register (TIMx_SR) . 265

12.4.6 TIM1 event generation register (TIMx_EGR) . 266

12.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1) 268

12.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2) 270

12.4.9 TIM1 capture/compare enable register (TIMx_CCER) 272

12.4.10 TIM1 counter (TIMx_CNT) . 274

12.4.11 TIM1 prescaler (TIMx_PSC) . 274

12.4.12 TIM1 auto-reload register (TIMx_ARR) . 275

12.4.13 TIM1 repetition counter register (TIMx_RCR) 276

12.4.14 TIM1 capture/compare register 1 (TIMx_CCR1) 276

12.4.15 TIM1 capture/compare register 2 (TIMx_CCR2) 277

12.4.16 TIM1 capture/compare register 3 (TIMx_CCR3) 277

12.4.17 TIM1 capture/compare register 4 (TIMx_CCR4) 278

12.4.18 TIM1 break and dead-time register (TIMx_BDTR) 278

12.4.19 TIM1 DMA control register (TIMx_DCR) . 280

12.4.20 TIM1 DMA address for full transfer (TIMx_DMAR) 281

12.4.21 TIM1 register map . 282

13 General-purpose timers (TIM2 to TIM5) . 284

13.1 TIM2 to TIM5 introduction . 284

13.2 TIM2 to TIM5 main features . 285

13.3 TIM2 to TIM5 functional description . 286

13.3.1 Time-base unit . 286

13.3.2 Counter modes . 288

13.3.3 Clock selection . 297

13.3.4 Capture/compare channels . 300

13.3.5 Input capture mode . 302

13.3.6 PWM input mode . 303

13.3.7 Forced output mode . 304

13.3.8 Output compare mode . 304

13.3.9 PWM mode . 305

13.3.10 One-pulse mode . 308

13.3.11 Clearing the OCxREF signal on an external event 309

13.3.12 Encoder interface mode . 310

13.3.13 Timer input XOR function . 313

13.3.14 Timers and external trigger synchronization . 313

13.3.15 Timer synchronization . 316

RM0041 Rev 6 11/709

RM0041 Contents

21

13.3.16 Debug mode . 320

13.4 TIMx2 to TIM5 registers . 321

13.4.1 TIMx control register 1 (TIMx_CR1) . 321

13.4.2 TIMx control register 2 (TIMx_CR2) . 323

13.4.3 TIMx slave mode control register (TIMx_SMCR) 324

13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) 326

13.4.5 TIMx status register (TIMx_SR) . 327

13.4.6 TIMx event generation register (TIMx_EGR) . 329

13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 330

13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) 333

13.4.9 TIMx capture/compare enable register (TIMx_CCER) 334

13.4.10 TIMx counter (TIMx_CNT) . 335

13.4.11 TIMx prescaler (TIMx_PSC) . 335

13.4.12 TIMx auto-reload register (TIMx_ARR) . 336

13.4.13 TIMx capture/compare register 1 (TIMx_CCR1) 336

13.4.14 TIMx capture/compare register 2 (TIMx_CCR2) 337

13.4.15 TIMx capture/compare register 3 (TIMx_CCR3) 337

13.4.16 TIMx capture/compare register 4 (TIMx_CCR4) 337

13.4.17 TIMx DMA control register (TIMx_DCR) . 338

13.4.18 TIMx DMA address for full transfer (TIMx_DMAR) 338

13.4.19 TIMx register map . 340

14 General-purpose timers (TIM12/13/14) . 342

14.1 TIM12/13/14 introduction . 342

14.2 TIM12/13/14 main features . 342

14.2.1 TIM12 main features . 342

14.2.2 TIM13/TIM14 main features . 343

14.3 TIM12/13/14 functional description . 345

14.3.1 Time-base unit . 345

14.3.2 Counter modes . 347

14.3.3 Clock selection . 350

14.3.4 Capture/compare channels . 352

14.3.5 Input capture mode . 353

14.3.6 PWM input mode (only for TIM12) . 355

14.3.7 Forced output mode . 356

14.3.8 Output compare mode . 356

14.3.9 PWM mode . 357

Contents RM0041

12/709 RM0041 Rev 6

14.3.10 One-pulse mode . 358

14.3.11 TIM12 external trigger synchronization . 360

14.3.12 Timer synchronization (TIM12) . 363

14.3.13 Debug mode . 363

14.4 TIM12 registers . 364

14.4.1 TIM12 control register 1 (TIMx_CR1) . 364

14.4.2 TIM12 control register 2 (TIMx_CR2) . 365

14.4.3 TIM12 slave mode control register (TIMx_SMCR) 366

14.4.4 TIM12 Interrupt enable register (TIMx_DIER) 367

14.4.5 TIM12 status register (TIMx_SR) . 369

14.4.6 TIM event generation register (TIMx_EGR) . 370

14.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1) 371

14.4.8 TIM12 capture/compare enable register (TIMx_CCER) 374

14.4.9 TIM12 counter (TIMx_CNT) . 375

14.4.10 TIM12 prescaler (TIMx_PSC) . 375

14.4.11 TIM12 auto-reload register (TIMx_ARR) . 375

14.4.12 TIM12 capture/compare register 1 (TIMx_CCR1) 376

14.4.13 TIM12 capture/compare register 2 (TIMx_CCR2) 376

14.4.14 TIM12 register map . 377

14.5 TIM13/14 registers . 379

14.5.1 TIM13/14 control register 1 (TIMx_CR1) . 379

14.5.2 TIM10/11/13/14 Interrupt enable register (TIMx_DIER) 380

14.5.3 TIM13/14 status register (TIMx_SR) . 380

14.5.4 TIM13/14 event generation register (TIMx_EGR) 381

14.5.5 TIM13/14 capture/compare mode register 1 (TIMx_CCMR1) 381

14.5.6 TIM13/14 capture/compare enable register (TIMx_CCER) 384

14.5.7 TIM13/14 counter (TIMx_CNT) . 385

14.5.8 TIM13/14 prescaler (TIMx_PSC) . 385

14.5.9 TIM13/14 auto-reload register (TIMx_ARR) . 385

14.5.10 TIM13/14 capture/compare register 1 (TIMx_CCR1) 386

14.5.11 TIM13/14 register map . 387

15 General-purpose timers (TIM15/16/17) . 388

15.1 TIM15/16/17 introduction . 388

15.2 TIM15 main features . 389

15.3 TIM16 and TIM17 main features . 390

RM0041 Rev 6 13/709

RM0041 Contents

21

15.4 TIM15/16/17 functional description . 393

15.4.1 Time-base unit . 393

15.4.2 Counter modes . 394

15.4.3 Repetition counter . 397

15.4.4 Clock selection . 398

15.4.5 Capture/compare channels . 400

15.4.6 Input capture mode . 402

15.4.7 PWM input mode (only for TIM15) . 403

15.4.8 Forced output mode . 404

15.4.9 Output compare mode . 404

15.4.10 PWM mode . 405

15.4.11 Complementary outputs and dead-time insertion 407

15.4.12 Using the break function . 408

15.4.13 One-pulse mode . 411

15.4.14 TIM15 and external trigger synchronization (only for TIM15) 413

15.4.15 Timer synchronization . 415

15.4.16 Debug mode . 415

15.5 TIM15 registers . 415

15.5.1 TIM15 control register 1 (TIM15_CR1) . 416

15.5.2 TIM15 control register 2 (TIM15_CR2) . 417

15.5.3 TIM15 slave mode control register (TIM15_SMCR) 418

15.5.4 TIM15 DMA/interrupt enable register (TIM15_DIER) 420

15.5.5 TIM15 status register (TIM15_SR) . 421

15.5.6 TIM15 event generation register (TIM15_EGR) 422

15.5.7 TIM15 capture/compare mode register 1 (TIM15_CCMR1) 423

15.5.8 TIM15 capture/compare enable register (TIM15_CCER) 426

15.5.9 TIM15 counter (TIM15_CNT) . 429

15.5.10 TIM15 prescaler (TIM15_PSC) . 429

15.5.11 TIM15 auto-reload register (TIM15_ARR) . 429

15.5.12 TIM15 repetition counter register (TIM15_RCR) 430

15.5.13 TIM15 capture/compare register 1 (TIM15_CCR1) 430

15.5.14 TIM15 capture/compare register 2 (TIM15_CCR2) 431

15.5.15 TIM15 break and dead-time register (TIM15_BDTR) 431

15.5.16 TIM15 DMA control register (TIM15_DCR) . 433

15.5.17 TIM15 DMA address for full transfer (TIM15_DMAR) 434

15.5.18 TIM15 register map . 434

15.6 TIM16&TIM17 registers . 437

Contents RM0041

14/709 RM0041 Rev 6

15.6.1 TIM16&TIM17 control register 1 (TIMx_CR1) 437

15.6.2 TIM16&TIM17 control register 2 (TIMx_CR2) 438

15.6.3 TIM16&TIM17 DMA/interrupt enable register (TIMx_DIER) 440

15.6.4 TIM16&TIM17 status register (TIMx_SR) . 441

15.6.5 TIM16&TIM17 event generation register (TIMx_EGR) 442

15.6.6 TIM16&TIM17 capture/compare mode register 1 (TIMx_CCMR1) . . . 443

15.6.7 TIM16&TIM17 capture/compare enable register (TIMx_CCER) 445

15.6.8 TIM16&TIM17 counter (TIMx_CNT) . 448

15.6.9 TIM16&TIM17 prescaler (TIMx_PSC) . 448

15.6.10 TIM16&TIM17 auto-reload register (TIMx_ARR) 448

15.6.11 TIM16&TIM17 repetition counter register (TIMx_RCR) 449

15.6.12 TIM16&TIM17 capture/compare register 1 (TIMx_CCR1) 449

15.6.13 TIM16&TIM17 break and dead-time register (TIMx_BDTR) 450

15.6.14 TIM16&TIM17 DMA control register (TIMx_DCR) 451

15.6.15 TIM16&TIM17 DMA address for full transfer (TIMx_DMAR) 452

15.6.16 TIM16&TIM17 register map . 454

16 Basic timers (TIM6 and TIM7) . 456

16.1 TIM6 and TIM7 introduction . 456

16.2 TIM6 and TIM7 main features . 456

16.3 TIM6 and TIM7 functional description . 457

16.3.1 Time-base unit . 457

16.3.2 Counting mode . 459

16.3.3 Clock source . 462

16.3.4 Debug mode . 463

16.4 TIM6 and TIM7 registers . 463

16.4.1 TIM6 and TIM7 control register 1 (TIMx_CR1) 463

16.4.2 TIM6 and TIM7 control register 2 (TIMx_CR2) 465

16.4.3 TIM6 and TIM7 DMA/Interrupt enable register (TIMx_DIER) 465

16.4.4 TIM6 and TIM7 status register (TIMx_SR) . 466

16.4.5 TIM6 and TIM7 event generation register (TIMx_EGR) 466

16.4.6 TIM6 and TIM7 counter (TIMx_CNT) . 466

16.4.7 TIM6 and TIM7 prescaler (TIMx_PSC) . 467

16.4.8 TIM6 and TIM7 auto-reload register (TIMx_ARR) 467

16.4.9 TIM6 and TIM7 register map . 468

17 Real-time clock (RTC) . 469

RM0041 Rev 6 15/709

RM0041 Contents

21

17.1 RTC introduction . 469

17.2 RTC main features . 470

17.3 RTC functional description . 471

17.3.1 Overview . 471

17.3.2 Resetting RTC registers . 472

17.3.3 Reading RTC registers . 472

17.3.4 Configuring RTC registers . 472

17.3.5 RTC flag assertion . 473

17.4 RTC registers . 474

17.4.1 RTC control register high (RTC_CRH) . 474

17.4.2 RTC control register low (RTC_CRL) . 475

17.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL) 476

17.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL) 477

17.4.5 RTC counter register (RTC_CNTH / RTC_CNTL) 478

17.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL) 479

17.4.7 RTC register map . 480

18 Independent watchdog (IWDG) . 481

18.1 IWDG introduction . 481

18.2 IWDG main features . 481

18.3 IWDG functional description . 481

18.3.1 Hardware watchdog . 482

18.3.2 Register access protection . 482

18.3.3 Debug mode . 482

18.4 IWDG registers . 483

18.4.1 Key register (IWDG_KR) . 483

18.4.2 Prescaler register (IWDG_PR) . 483

18.4.3 Reload register (IWDG_RLR) . 484

18.4.4 Status register (IWDG_SR) . 484

18.4.5 IWDG register map . 486

19 Window watchdog (WWDG) . 487

19.1 WWDG introduction . 487

19.2 WWDG main features . 487

19.3 WWDG functional description . 487

19.4 How to program the watchdog timeout . 489

Contents RM0041

16/709 RM0041 Rev 6

19.5 Debug mode . 490

19.6 WWDG registers . 491

19.6.1 Control register (WWDG_CR) . 491

19.6.2 Configuration register (WWDG_CFR) . 492

19.6.3 Status register (WWDG_SR) . 492

19.6.4 WWDG register map . 493

20 Flexible static memory controller (FSMC) . 494

20.1 FSMC main features . 494

20.2 Block diagram . 495

20.3 AHB interface . 495

20.3.1 Supported memories and transactions . 496

20.4 External device address mapping . 497

20.4.1 NOR/PSRAM address mapping . 497

20.5 NOR flash/PSRAM controller . 498

20.5.1 External memory interface signals . 499

20.5.2 Supported memories and transactions . 501

20.5.3 General timing rules . 502

20.5.4 NOR flash/PSRAM controller asynchronous transactions 502

20.5.5 Synchronous transactions . 520

20.5.6 NOR/PSRAM control registers . 526

20.5.7 FSMC register map . 534

21 Serial peripheral interface (SPI) . 536

21.1 SPI introduction . 536

21.2 SPI main features . 537

21.2.1 SPI features . 537

21.3 SPI functional description . 538

21.3.1 General description . 538

21.3.2 Configuring the SPI in slave mode . 542

21.3.3 Configuring the SPI in master mode . 543

21.3.4 Configuring the SPI for half-duplex communication 543

21.3.5 Data transmission and reception procedures 544

21.3.6 CRC calculation . 551

21.3.7 Status flags . 553

21.3.8 Disabling the SPI . 554

RM0041 Rev 6 17/709

RM0041 Contents

21

21.3.9 SPI communication using DMA (direct memory addressing) 555

21.3.10 Error flags . 557

21.3.11 SPI interrupts . 558

21.4 SPI registers . 559

21.4.1 SPI control register 1 (SPI_CR1) . 559

21.4.2 SPI control register 2 (SPI_CR2) . 560

21.4.3 SPI status register (SPI_SR) . 561

21.4.4 SPI data register (SPI_DR) . 562

21.4.5 SPI CRC polynomial register (SPI_CRCPR) . 563

21.4.6 SPI RX CRC register (SPI_RXCRCR) . 563

21.4.7 SPI TX CRC register (SPI_TXCRCR) . 564

21.4.8 SPI register map . 565

22 Inter-integrated circuit (I2C) interface . 566

22.1 I2C introduction . 566

22.2 I2C main features . 566

22.3 I2C functional description . 567

22.3.1 Mode selection . 567

22.3.2 I2C slave mode . 569

22.3.3 I2C master mode . 571

22.3.4 Error conditions . 578

22.3.5 SDA/SCL line control . 579

22.3.6 SMBus . 580

22.3.7 DMA requests . 582

22.3.8 Packet error checking . 584

22.4 I2C interrupts . 584

22.5 I2C debug mode . 586

22.6 I2C registers . 586

22.6.1 I2C Control register 1 (I2C_CR1) . 586

22.6.2 I2C Control register 2 (I2C_CR2) . 588

22.6.3 I2C Own address register 1 (I2C_OAR1) . 590

22.6.4 I2C Own address register 2 (I2C_OAR2) . 590

22.6.5 I2C Data register (I2C_DR) . 591

22.6.6 I2C Status register 1 (I2C_SR1) . 591

22.6.7 I2C Status register 2 (I2C_SR2) . 594

22.6.8 I2C Clock control register (I2C_CCR) . 595

Contents RM0041

18/709 RM0041 Rev 6

22.6.9 I2C TRISE register (I2C_TRISE) . 596

22.6.10 I2C register map . 598

23 Universal synchronous asynchronous receiver
transmitter (USART) . 599

23.1 USART introduction . 599

23.2 USART main features . 599

23.3 USART functional description . 600

23.3.1 USART character description . 603

23.3.2 Transmitter . 604

23.3.3 Receiver . 607

23.3.4 Fractional baud rate generation . 612

23.3.5 USART receiver tolerance to clock deviation . 617

23.3.6 Multiprocessor communication . 617

23.3.7 Parity control . 619

23.3.8 LIN (local interconnection network) mode . 620

23.3.9 USART synchronous mode . 623

23.3.10 Single-wire half-duplex communication . 625

23.3.11 Smartcard . 626

23.3.12 IrDA SIR ENDEC block . 628

23.3.13 Continuous communication using DMA . 630

23.3.14 Hardware flow control . 632

23.4 USART interrupts . 635

23.5 USART mode configuration . 636

23.6 USART registers . 636

23.6.1 Status register (USART_SR) . 636

23.6.2 Data register (USART_DR) . 639

23.6.3 Baud rate register (USART_BRR) . 639

23.6.4 Control register 1 (USART_CR1) . 639

23.6.5 Control register 2 (USART_CR2) . 642

23.6.6 Control register 3 (USART_CR3) . 643

23.6.7 Guard time and prescaler register (USART_GTPR) 645

23.6.8 USART register map . 646

24 High-definition multimedia interface-consumer
electronics control controller (HDMI™-CEC) 647

24.1 Introduction . 647

RM0041 Rev 6 19/709

RM0041 Contents

21

24.2 HDMI-CEC main features . 648

24.3 HDMI-CEC bus topology . 648

24.3.1 HDMI-CEC pin . 648

24.3.2 Message description . 649

24.3.3 Bit timing . 650

24.4 Arbitration . 651

24.4.1 Signal free time (SFT) . 651

24.4.2 Header arbitration . 651

24.5 Error handling . 652

24.5.1 BTE, BPE and Error bit generation . 652

24.5.2 Message error . 652

24.6 Device addressing . 652

24.7 HDMI-CEC functional description . 653

24.7.1 Block diagram . 653

24.7.2 Prescaler . 653

24.7.3 Rx digital filter . 654

24.7.4 Rx bit timing . 654

24.7.5 Tx bit timing . 655

24.7.6 CEC arbiter . 656

24.7.7 CEC states . 657

24.7.8 CEC and system Stop mode . 661

24.8 HDMI-CEC interrupts . 662

24.9 HDMI-CEC registers . 663

24.9.1 CEC configuration register (CEC_CFGR) . 663

24.9.2 CEC own address register (CEC_OAR) . 664

24.9.3 CEC prescaler register (CEC_PRES) . 664

24.9.4 CEC error status register (CEC_ESR) . 665

24.9.5 CEC control and status register (CEC_CSR) 666

24.9.6 CEC Tx data register (CEC_TXD) . 667

24.9.7 CEC Rx data register (CEC_RXD) . 667

24.9.8 HDMI-CEC register map . 668

25 Debug support (DBG) . 669

25.1 Overview . 669

25.2 Reference Arm® documentation . 671

25.3 SWJ debug port (serial wire and JTAG) . 671

Contents RM0041

20/709 RM0041 Rev 6

25.3.1 Mechanism to select the JTAG-DP or the SW-DP 672

25.4 Pinout and debug port pins . 672

25.4.1 SWJ debug port pins . 672

25.4.2 Flexible SWJ-DP pin assignment . 672

25.4.3 Internal pull-up and pull-down on JTAG pins . 673

25.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . . 675

25.5 STM32F100xx JTAG TAP connection . 675

25.6 ID codes and locking mechanism . 677

25.6.1 MCU device ID code . 677

25.6.2 Boundary scan TAP . 678

25.6.3 Cortex®-M3 TAP . 678

25.6.4 Cortex®-M3 JEDEC-106 ID code . 678

25.7 JTAG debug port . 678

25.8 SW debug port . 680

25.8.1 SW protocol introduction . 680

25.8.2 SW protocol sequence . 680

25.8.3 SW-DP state machine (reset, idle states, ID code) 681

25.8.4 DP and AP read/write accesses . 681

25.8.5 SW-DP registers . 682

25.8.6 SW-AP registers . 682

25.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP . 683

25.10 Core debug . 684

25.11 Capability of the debugger host to connect under system reset 685

25.12 FPB (Flash patch breakpoint) . 685

25.13 DWT (data watchpoint trigger) . 686

25.14 ITM (instrumentation trace macrocell) . 686

25.14.1 General description . 686

25.14.2 Time stamp packets, synchronization and overflow packets 686

25.15 MCU debug component (DBGMCU) . 688

25.15.1 Debug support for low-power modes . 688

25.15.2 Debug support for timers, watchdog and I2C . 688

25.15.3 Debug MCU configuration register . 689

25.16 TPIU (trace port interface unit) . 691

25.16.1 Introduction . 691

25.16.2 TRACE pin assignment . 693

RM0041 Rev 6 21/709

RM0041 Contents

21

25.16.3 TPUI formatter . 694

25.16.4 TPUI frame synchronization packets . 695

25.16.5 Transmission of the synchronization frame packet 695

25.16.6 Synchronous mode . 695

25.16.7 Asynchronous mode . 696

25.16.8 TRACECLKIN connection inside the STM32F100xx 696

25.16.9 TPIU registers . 696

25.16.10 Example of configuration . 697

25.17 DBG register map . 698

26 Device electronic signature . 699

26.1 Memory size registers . 699

26.1.1 Flash size register . 699

26.2 Unique device ID register (96 bits) . 700

27 Important security notice . 702

28 Revision history . 703

List of tables RM0041

22/709 RM0041 Rev 6

List of tables

Table 1. Low and medium-density device register boundary addresses . 37
Table 2. High-density device register boundary addresses . 38
Table 3. Flash module organization (low-density value line devices) . 42
Table 4. Flash module organization (medium-density value line devices) . 43
Table 5. Flash module organization (high-density value line devices) . 43
Table 6. Boot modes. 45
Table 7. CRC calculation unit register map and reset values. 49
Table 8. Low-power mode summary . 55
Table 9. Sleep-now. 57
Table 10. Sleep-on-exit. 57
Table 11. Stop mode . 58
Table 12. Standby mode. 59
Table 13. PWR register map and reset values . 63
Table 14. BKP register map and reset values . 69
Table 15. RCC register map and reset values . 101
Table 16. Port bit configuration table . 104
Table 17. Output MODE bits. 104
Table 18. Advanced timer TIM1 . 109
Table 19. General-purpose timers TIM2/3/4/5 . 109
Table 20. General-purpose timers TIM15/16/17. 109
Table 21. General-purpose timers TIM12/13/14. 110
Table 22. USARTs . 110
Table 23. SPI . 110
Table 24. CEC . 111
Table 25. I2C . 111
Table 26. FSMC . 111
Table 27. Other IOs . 112
Table 28. Debug interface signals . 118
Table 29. Debug port mapping . 118
Table 30. TIM5 alternate function remapping . 119
Table 31. TIM12 remapping . 119
Table 32. TIM13 remapping . 119
Table 33. TIM14 remapping . 119
Table 34. TIM4 alternate function remapping . 119
Table 35. TIM3 alternate function remapping . 119
Table 36. TIM2 alternate function remapping . 120
Table 37. TIM1 alternate function remapping . 120
Table 38. TIM1 DMA remapping. 120
Table 39. TIM15 remapping . 120
Table 40. TIM16 remapping . 121
Table 41. TIM17 remapping . 121
Table 42. USART3 remapping . 121
Table 43. USART2 remapping . 121
Table 44. USART1 remapping . 121
Table 45. I2C1 remapping . 122
Table 46. SPI1 remapping . 122
Table 47. CEC remapping . 122
Table 48. GPIO register map and reset values . 130

RM0041 Rev 6 23/709

RM0041 List of tables

25

Table 49. AFIO register map and reset values . 130
Table 50. Vector table for STM32F100xx devices . 132
Table 51. External interrupt/event controller register map and reset values. 143
Table 52. Programmable data width and endian behavior (when bits PINC = MINC = 1) 149
Table 53. DMA interrupt requests . 150
Table 54. Summary of DMA1 requests for each channel . 152
Table 55. Summary of DMA2 requests for each channel . 153
Table 56. DMA register map and reset values . 159
Table 57. ADC pins. 164
Table 58. Analog watchdog channel selection . 166
Table 59. External trigger for regular channels for ADC1. 171
Table 60. External trigger for injected channels for ADC1 . 171
Table 61. ADC interrupts . 174
Table 62. ADC register map and reset values . 188
Table 63. DAC pins. 191
Table 64. External triggers . 194
Table 65. DAC register map . 210
Table 66. Counting direction versus encoder signals . 249
Table 67. TIMx Internal trigger connection . 263
Table 68. Output control bits for complementary OCx and OCxN channels with

break feature. 274
Table 69. TIM1 register map and reset values . 282
Table 70. Counting direction versus encoder signals . 311
Table 71. TIMx internal trigger connection . 326
Table 72. Output control bit for standard OCx channels. 335
Table 73. TIMx register map and reset values . 340
Table 74. TIMx Internal trigger connection . 367
Table 75. Output control bit for standard OCx channels. 375
Table 76. TIM12 register map and reset values . 377
Table 77. Output control bit for standard OCx channels. 384
Table 78. TIM13/14 register map and reset values . 387
Table 79. TIMx Internal trigger connection . 419
Table 80. Output control bits for complementary OCx and OCxN channels with break feature 428
Table 81. TIM15 register map and reset values . 435
Table 82. Output control bits for complementary OCx and OCxN channels with break feature 447
Table 83. TIM16&TIM17 register map and reset values. 454
Table 84. TIM6 and TIM7 register map and reset values . 468
Table 85. RTC register map and reset values . 480
Table 86. Min/max IWDG timeout period (in ms) at 40 kHz (LSI). 482
Table 87. IWDG register map and reset values . 486
Table 88. Minimum and maximum timeout values @24 MHz (fPCLK1) . 490
Table 89. WWDG register map and reset values . 493
Table 90. NOR/PSRAM bank selection . 497
Table 91. External memory address. 497
Table 92. Programmable NOR/PSRAM access parameters . 498
Table 93. Nonmultiplexed I/O NOR flash . 499
Table 94. Multiplexed I/O NOR flash . 499
Table 95. Nonmultiplexed I/Os PSRAM/SRAM . 500
Table 96. Multiplexed I/O PSRAM . 500
Table 97. NOR flash/PSRAM controller: example of supported memories and transactions. 501
Table 98. FSMC_BCRx bit fields . 504
Table 99. FSMC_BTRx bit fields . 504

List of tables RM0041

24/709 RM0041 Rev 6

Table 100. FSMC_BCRx bit fields . 506
Table 101. FSMC_BTRx bit fields . 506
Table 102. FSMC_BWTRx bit fields . 507
Table 103. FSMC_BCRx bit fields . 509
Table 104. FSMC_BTRx bit fields . 509
Table 105. FSMC_BWTRx bit fields . 510
Table 106. FSMC_BCRx bit fields . 511
Table 107. FSMC_BTRx bit fields . 512
Table 108. FSMC_BWTRx bit fields . 512
Table 109. FSMC_BCRx bit fields . 514
Table 110. FSMC_BTRx bit fields . 514
Table 111. FSMC_BWTRx bit fields . 515
Table 112. FSMC_BCRx bit fields . 516
Table 113. FSMC_BTRx bit fields . 517
Table 114. FSMC_BCRx bit fields . 522
Table 115. FSMC_BTRx bit fields . 523
Table 116. FSMC_BCRx bit fields . 524
Table 117. FSMC_BTRx bit fields . 525
Table 118. FSMC register map. 534
Table 119. SPI interrupt requests . 558
Table 120. SPI register map and reset values . 565
Table 121. SMBus vs. I2C . 580
Table 122. I2C Interrupt requests . 584
Table 123. I2C register map and reset values . 598
Table 124. Noise detection from sampled data . 611
Table 125. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,

oversampling by 16. 614
Table 126. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz,

oversampling by 8. 615
Table 127. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 16. 615
Table 128. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 8. 616
Table 129. USART receiver’s tolerance when DIV fraction is 0 . 617
Table 130. USART receiver tolerance when DIV_Fraction is different from 0 617
Table 131. Frame formats . 619
Table 132. USART interrupt requests. 635
Table 133. USART mode configuration . 636
Table 134. USART register map and reset values . 646
Table 135. HDMI pin . 649
Table 136. Signal free time definition . 651
Table 137. Bit status depending on the low bit duration (LBD). 655
Table 138. Bit status depending on the total bit duration (TBD) . 655
Table 139. STM32 CEC arbitration. 656
Table 140. Software sequence to respect when receiving a message. 658
Table 141. Software sequence to respect when transmitting a message . 659
Table 142. Software sequence to respect when transmitting a message . 661
Table 143. HDMI-CEC interrupts . 662
Table 144. HDMI-CEC register map and reset values . 668
Table 145. SWJ debug port pins . 672
Table 146. Flexible SWJ-DP pin assignment . 673
Table 147. JTAG debug port data registers . 678

RM0041 Rev 6 25/709

RM0041 List of tables

25

Table 148. 32-bit debug port registers addressed through the shifted value A[3:2] 679
Table 149. Packet request (8-bits) . 680
Table 150. ACK response (3 bits). 681
Table 151. DATA transfer (33 bits) . 681
Table 152. SW-DP registers . 682
Table 153. Cortex®-M3 AHB-AP registers. 683
Table 154. Core debug registers . 684
Table 155. Main ITM registers . 687
Table 156. Asynchronous TRACE pin assignment. 693
Table 157. Synchronous TRACE pin assignment . 693
Table 158. Flexible TRACE pin assignment . 694
Table 159. Important TPIU registers. 696
Table 160. Value DBG register map and reset values . 698
Table 161. Document revision history . 703

List of figures RM0041

26/709 RM0041 Rev 6

List of figures

Figure 1. Low and medium density value line system architecture . 34
Figure 2. High density value line system architecture . 35
Figure 3. CRC calculation unit block diagram . 47
Figure 4. Power supply overview . 50
Figure 5. Power on reset/power down reset waveform . 53
Figure 6. PVD thresholds. 54
Figure 7. Simplified diagram of the reset circuit . 72
Figure 8. STM32F100xx clock tree (low and medium-density devices). 73
Figure 9. STM32F100xx clock tree (high-density devices) . 74
Figure 10. HSE/ LSE clock sources. 75
Figure 11. Basic structure of a standard I/O port bit . 103
Figure 12. Basic structure of a 5-Volt tolerant I/O port bit . 103
Figure 13. Input floating/pull up/pull down configurations . 106
Figure 14. Output configuration . 107
Figure 15. Alternate function configuration . 108
Figure 16. High impedance-analog configuration . 109
Figure 17. ADC / DAC . 111
Figure 18. External interrupt/event controller block diagram . 136
Figure 19. External interrupt/event GPIO mapping . 139
Figure 20. DMA block diagram in low and medium- density

Cat.1 and Cat.2 STM32F100xx devices . 145
Figure 21. DMA block diagram in high-density

Cat.4 and Cat.5 STM32F100xx devices . 146
Figure 22. DMA1 request mapping . 151
Figure 23. DMA2 request mapping . 153
Figure 24. Single ADC block diagram . 163
Figure 25. Timing diagram . 166
Figure 26. Analog watchdog guarded area . 166
Figure 27. Injected conversion latency . 168
Figure 28. Calibration timing diagram . 170
Figure 29. Right alignment of data . 170
Figure 30. Left alignment of data . 170
Figure 31. Temperature sensor and VREFINT channel block diagram . 173
Figure 32. DAC channel block diagram . 191
Figure 33. Data registers in single DAC channel mode . 193
Figure 34. Data registers in dual DAC channel mode . 193
Figure 35. Timing diagram for conversion with trigger disabled TEN = 0 . 194
Figure 36. DAC LFSR register calculation algorithm . 196
Figure 37. DAC conversion (SW trigger enabled) with LFSR wave generation. 196
Figure 38. DAC triangle wave generation . 197
Figure 39. DAC conversion (SW trigger enabled) with triangle wave generation 197
Figure 40. Advanced-control timer block diagram . 214
Figure 41. Counter timing diagram with prescaler division change from 1 to 2 216
Figure 42. Counter timing diagram with prescaler division change from 1 to 4 216
Figure 43. Counter timing diagram, internal clock divided by 1 . 217
Figure 44. Counter timing diagram, internal clock divided by 2 . 218
Figure 45. Counter timing diagram, internal clock divided by 4 . 218
Figure 46. Counter timing diagram, internal clock divided by N. 218

RM0041 Rev 6 27/709

RM0041 List of figures

31

Figure 47. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 219
Figure 48. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) 219
Figure 49. Counter timing diagram, internal clock divided by 1 . 221
Figure 50. Counter timing diagram, internal clock divided by 2 . 221
Figure 51. Counter timing diagram, internal clock divided by 4 . 222
Figure 52. Counter timing diagram, internal clock divided by N. 222
Figure 53. Counter timing diagram, update event when repetition counter is not used. 223
Figure 54. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 224
Figure 55. Counter timing diagram, internal clock divided by 2 . 224
Figure 56. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 225
Figure 57. Counter timing diagram, internal clock divided by N. 225
Figure 58. Counter timing diagram, update event with ARPE=1 (counter underflow) 226
Figure 59. Counter timing diagram, Update event with ARPE=1 (counter overflow) 226
Figure 60. Update rate examples depending on mode and TIMx_RCR register settings 227
Figure 61. Control circuit in normal mode, internal clock divided by 1 . 228
Figure 62. TI2 external clock connection example. 229
Figure 63. Control circuit in external clock mode 1 . 230
Figure 64. External trigger input block . 230
Figure 65. Control circuit in external clock mode 2 . 231
Figure 66. Capture/compare channel (example: channel 1 input stage) . 232
Figure 67. Capture/compare channel 1 main circuit . 232
Figure 68. Output stage of capture/compare channel (channel 1 to 3) . 233
Figure 69. Output stage of capture/compare channel (channel 4). 233
Figure 70. PWM input mode timing . 235
Figure 71. Output compare mode, toggle on OC1. 237
Figure 72. Edge-aligned PWM waveforms (ARR=8) . 238
Figure 73. Center-aligned PWM waveforms (ARR=8) . 239
Figure 74. Complementary output with dead-time insertion. 241
Figure 75. Dead-time waveforms with delay greater than the negative pulse. 241
Figure 76. Dead-time waveforms with delay greater than the positive pulse. 241
Figure 77. Output behavior in response to a break.. 244
Figure 78. Clearing TIMx OCxREF . 245
Figure 79. 6-step generation, COM example (OSSR=1) . 246
Figure 80. Example of one pulse mode. . 247
Figure 81. Example of counter operation in encoder interface mode. 250
Figure 82. Example of encoder interface mode with TI1FP1 polarity inverted. 250
Figure 83. Example of Hall sensor interface . 252
Figure 84. Control circuit in reset mode . 253
Figure 85. Control circuit in gated mode . 254
Figure 86. Control circuit in trigger mode. 255
Figure 87. Control circuit in external clock mode 2 + trigger mode . 256
Figure 88. General-purpose timer block diagram . 286
Figure 89. Counter timing diagram with prescaler division change from 1 to 2 287
Figure 90. Counter timing diagram with prescaler division change from 1 to 4 288
Figure 91. Counter timing diagram, internal clock divided by 1 . 289
Figure 92. Counter timing diagram, internal clock divided by 2 . 289
Figure 93. Counter timing diagram, internal clock divided by 4 . 289
Figure 94. Counter timing diagram, internal clock divided by N. 290
Figure 95. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 290
Figure 96. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 291
Figure 97. Counter timing diagram, internal clock divided by 1 . 292
Figure 98. Counter timing diagram, internal clock divided by 2 . 292

List of figures RM0041

28/709 RM0041 Rev 6

Figure 99. Counter timing diagram, internal clock divided by 4 . 292
Figure 100. Counter timing diagram, internal clock divided by N. 293
Figure 101. Counter timing diagram, Update event . 293
Figure 102. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 294
Figure 103. Counter timing diagram, internal clock divided by 2 . 295
Figure 104. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 295
Figure 105. Counter timing diagram, internal clock divided by N. 295
Figure 106. Counter timing diagram, Update event with ARPE=1 (counter underflow). 296
Figure 107. Counter timing diagram, Update event with ARPE=1 (counter overflow) 296
Figure 108. Control circuit in normal mode, internal clock divided by 1 . 297
Figure 109. TI2 external clock connection example. 298
Figure 110. Control circuit in external clock mode 1 . 299
Figure 111. External trigger input block . 299
Figure 112. Control circuit in external clock mode 2 . 300
Figure 113. Capture/compare channel (example: channel 1 input stage) . 300
Figure 114. Capture/compare channel 1 main circuit . 301
Figure 115. Output stage of capture/compare channel (channel 1). 301
Figure 116. PWM input mode timing . 303
Figure 117. Output compare mode, toggle on OC1. 305
Figure 118. Edge-aligned PWM waveforms (ARR=8) . 306
Figure 119. Center-aligned PWM waveforms (ARR=8) . 307
Figure 120. Example of one-pulse mode . 308
Figure 121. Clearing TIMx OCxREF . 310
Figure 122. Example of counter operation in encoder interface mode . 312
Figure 123. Example of encoder interface mode with TI1FP1 polarity inverted 312
Figure 124. Control circuit in reset mode . 313
Figure 125. Control circuit in gated mode . 314
Figure 126. Control circuit in trigger mode. 315
Figure 127. Control circuit in external clock mode 2 + trigger mode . 316
Figure 128. Master/Slave timer example . 316
Figure 129. Gating TIM2 with OC1REF of TIM3 . 317
Figure 130. Gating TIM2 with Enable of TIM3 . 318
Figure 131. Triggering TIM2 with update of TIM3 . 319
Figure 132. Triggering TIM2 with Enable of TIM3 . 319
Figure 133. Triggering TIM3 and TIM2 with TIM3 TI1 input. 320
Figure 134. General-purpose timer block diagram (TIM12) . 343
Figure 135. General-purpose timer block diagram (TIM13/14) . 344
Figure 136. Counter timing diagram with prescaler division change from 1 to 2 346
Figure 137. Counter timing diagram with prescaler division change from 1 to 4 346
Figure 138. Counter timing diagram, internal clock divided by 1 . 347
Figure 139. Counter timing diagram, internal clock divided by 2 . 348
Figure 140. Counter timing diagram, internal clock divided by 4 . 348
Figure 141. Counter timing diagram, internal clock divided by N. 348
Figure 142. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 349
Figure 143. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) 349
Figure 144. Control circuit in normal mode, internal clock divided by 1 . 350
Figure 145. TI2 external clock connection example. 351
Figure 146. Control circuit in external clock mode 1 . 351
Figure 147. Capture/compare channel (example: channel 1 input stage) . 352
Figure 148. Capture/compare channel 1 main circuit . 353
Figure 149. Output stage of capture/compare channel (channel 1). 353
Figure 150. PWM input mode timing . 355

RM0041 Rev 6 29/709

RM0041 List of figures

31

Figure 151. Output compare mode, toggle on OC1. 357
Figure 152. Edge-aligned PWM waveforms (ARR=8) . 358
Figure 153. Example of one pulse mode. . 359
Figure 154. Control circuit in reset mode . 361
Figure 155. Control circuit in gated mode . 362
Figure 156. Control circuit in trigger mode. 362
Figure 157. TIM15 block diagram . 391
Figure 158. TIM16 and TIM17 block diagram . 392
Figure 159. Counter timing diagram with prescaler division change from 1 to 2 394
Figure 160. Counter timing diagram with prescaler division change from 1 to 4 394
Figure 161. Counter timing diagram, internal clock divided by 1 . 395
Figure 162. Counter timing diagram, internal clock divided by 2 . 395
Figure 163. Counter timing diagram, internal clock divided by 4 . 396
Figure 164. Counter timing diagram, internal clock divided by N. 396
Figure 165. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not

preloaded). 396
Figure 166. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 397
Figure 167. Update rate examples depending on mode and TIMx_RCR register settings 398
Figure 168. Control circuit in normal mode, internal clock divided by 1 . 399
Figure 169. TI2 external clock connection example. 399
Figure 170. Control circuit in external clock mode 1 . 400
Figure 171. Capture/compare channel (example: channel 1 input stage) . 400
Figure 172. Capture/compare channel 1 main circuit . 401
Figure 173. Output stage of capture/compare channel (channel 1). 401
Figure 174. Output stage of capture/compare channel (channel 2 for TIM15) 401
Figure 175. PWM input mode timing . 403
Figure 176. Output compare mode, toggle on OC1. 405
Figure 177. Edge-aligned PWM waveforms (ARR=8) . 406
Figure 178. Complementary output with dead-time insertion. 407
Figure 179. Dead-time waveforms with delay greater than the negative pulse. 407
Figure 180. Dead-time waveforms with delay greater than the positive pulse. 408
Figure 181. Output behavior in response to a break.. 410
Figure 182. Example of one pulse mode. . 411
Figure 183. Control circuit in reset mode . 413
Figure 184. Control circuit in gated mode . 414
Figure 185. Control circuit in trigger mode. 415
Figure 186. Basic timer block diagram. 457
Figure 187. Counter timing diagram with prescaler division change from 1 to 2 458
Figure 188. Counter timing diagram with prescaler division change from 1 to 4 459
Figure 189. Counter timing diagram, internal clock divided by 1 . 460
Figure 190. Counter timing diagram, internal clock divided by 2 . 460
Figure 191. Counter timing diagram, internal clock divided by 4 . 461
Figure 192. Counter timing diagram, internal clock divided by N. 461
Figure 193. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not

preloaded). 461
Figure 194. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 462
Figure 195. Control circuit in normal mode, internal clock divided by 1 . 462
Figure 196. RTC simplified block diagram . 471
Figure 197. RTC second and alarm waveform example with PR=0003, ALARM=00004 473
Figure 198. RTC overflow waveform example with PR=0003 . 473

List of figures RM0041

30/709 RM0041 Rev 6

Figure 199. Independent watchdog block diagram . 482
Figure 200. Watchdog block diagram . 488
Figure 201. Window watchdog timing diagram . 489
Figure 202. FSMC block diagram . 495
Figure 203. FSMC memory banks . 497
Figure 204. Mode1 read accesses. 503
Figure 205. Mode1 write accesses . 503
Figure 206. ModeA read accesses . 505
Figure 207. ModeA write accesses . 505
Figure 208. Mode2 and mode B read accesses . 507
Figure 209. Mode2 write accesses . 508
Figure 210. Mode B write accesses. 508
Figure 211. Mode C read accesses . 510
Figure 212. Mode C write accesses . 511
Figure 213. Mode D read accesses . 513
Figure 214. Mode D write accesses. 513
Figure 215. Multiplexed read accesses . 515
Figure 216. Multiplexed write accesses . 516
Figure 217. Asynchronous wait during a read access . 518
Figure 218. Asynchronous wait during a write access. 519
Figure 219. Wait configurations . 521
Figure 220. Synchronous multiplexed read mode - NOR, PSRAM (CRAM) . 522
Figure 221. Synchronous multiplexed write mode - PSRAM (CRAM) . 524
Figure 222. SPI block diagram. 538
Figure 223. Single master/ single slave application. 539
Figure 224. Data clock timing diagram . 541
Figure 225. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and

RXONLY=0) in case of continuous transfers . 547
Figure 226. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0,

RXONLY=0) in case of continuous transfers . 548
Figure 227. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0)

in case of continuous transfers . 549
Figure 228. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of

continuous transfers . 549
Figure 229. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1)

in case of continuous transfers . 550
Figure 230. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0)

in case of discontinuous transfers . 551
Figure 231. Transmission using DMA . 556
Figure 232. Reception using DMA . 556
Figure 233. I2C bus protocol . 568
Figure 234. I2C block diagram . 569
Figure 235. Transfer sequence diagram for slave transmitter . 570
Figure 236. Transfer sequence diagram for slave receiver . 571
Figure 237. Transfer sequence diagram for master transmitter . 574
Figure 238. Method 1: transfer sequence diagram for master receiver . 575
Figure 239. Method 2: transfer sequence diagram for master receiver when N>2 576
Figure 240. Method 2: transfer sequence diagram for master receiver when N=2 577
Figure 241. Method 2: transfer sequence diagram for master receiver when N=1 578
Figure 242. I2C interrupt mapping diagram . 585
Figure 243. USART block diagram . 602
Figure 244. Word length programming . 603

RM0041 Rev 6 31/709

RM0041 List of figures

31

Figure 245. Configurable stop bits . 605
Figure 246. TC/TXE behavior when transmitting . 606
Figure 247. Start bit detection when oversampling by 16 or 8 . 607
Figure 248. Data sampling when oversampling by 16 . 610
Figure 249. Data sampling when oversampling by 8 . 611
Figure 250. Mute mode using Idle line detection . 618
Figure 251. Mute mode using address mark detection . 619
Figure 252. Break detection in LIN mode (11-bit break length - LBDL bit is set) 622
Figure 253. Break detection in LIN mode vs. Framing error detection. 623
Figure 254. USART example of synchronous transmission. 624
Figure 255. USART data clock timing diagram (M=0) . 624
Figure 256. USART data clock timing diagram (M=1) . 625
Figure 257. RX data setup/hold time . 625
Figure 258. ISO 7816-3 asynchronous protocol . 626
Figure 259. Parity error detection using the 1.5 stop bits . 627
Figure 260. IrDA SIR ENDEC- block diagram . 629
Figure 261. IrDA data modulation (3/16) -Normal mode . 629
Figure 262. Transmission using DMA . 631
Figure 263. Reception using DMA . 632
Figure 264. Hardware flow control between 2 USARTs . 632
Figure 265. RTS flow control . 633
Figure 266. CTS flow control . 634
Figure 267. USART interrupt mapping diagram . 635
Figure 268. CEC line connection . 649
Figure 269. Message structure . 650
Figure 270. Blocks . 650
Figure 271. Bit timings . 650
Figure 272. Follower acknowledge (ACK) . 651
Figure 273. Signal free time. 651
Figure 274. Arbitration phase. 651
Figure 275. Error bit timing . 652
Figure 276. HDMI-CEC block diagram . 653
Figure 277. Bit timing . 654
Figure 278. Tx bit timing . 655
Figure 279. CEC control state machine . 657
Figure 280. Example of a complete message reception . 658
Figure 281. Example of a complete message transmission . 659
Figure 282. Example of a message transmission with transmission error . 660
Figure 283. CEC and system Stop mode . 662
Figure 284. Block diagram of STM32 MCU and Cortex®-M3-level debug support 670
Figure 285. SWJ debug port . 671
Figure 286. JTAG TAP connections . 676
Figure 287. TPIU block diagram . 692

Documentation conventions RM0041

32/709 RM0041 Rev 6

1 Documentation conventions

1.1 List of abbreviations for registers

The following abbreviations are used in register descriptions:

1.2 Glossary

• Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

• Medium-density value line devices are STM32F100xx microcontrollers where the
flash memory density ranges between 64 and 128 Kbytes.

• High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

• Word: data of 32-bit length.

• Half-word: data of 16-bit length.

• Byte: data of 8-bit length.

1.3 Peripheral availability

For the availability and number of peripherals across sales types, refer to the STM32F100xx
datasheets.

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write-only (w) Software can only write to this bit. Reading the bit returns the reset
value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1. Writing ‘0’ has no
effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0. Writing ‘1’ has no
effect on the bit value.

read/clear by read
(rc_r)

Software can read this bit. Reading this bit automatically clears it to ‘0’.
Writing ‘0’ has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing ‘0’ has no effect on the
bit value.

read-only write
trigger (rt_w)

Software can read this bit. Writing ‘0’ or ‘1’ triggers an event but has no
effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1’. Writing ‘0’ has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

RM0041 Rev 6 33/709

RM0041 Documentation conventions

46

1.4 General information

The STM32F100xx MCUs are based on an Arm® Cortex® core.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

Memory and bus architecture RM0041

34/709 RM0041 Rev 6

2 Memory and bus architecture

2.1 System architecture

In low-and medium-density value line devices, the main system consists of:

• Three masters:

– Cortex®-M3 core DCode bus (D-bus) and System bus (S-bus)

– GP-DMA1 (general-purpose DMA)

• Three slaves:

– Internal SRAM

– Internal flash memory

– AHB to APB bridges (AHB to APBx), which connect all the APB peripherals

These are interconnected using a multilayer AHB bus architecture as shown in Figure 1.

Figure 1. Low and medium density value line system architecture

FLASH
(Flash

interface)

Ch.1

Ch.2

Ch.7

Cortex-M3

DMA1

ICode

DCode

System

AHB system bus

DMA request

APB1

Flash
memory

Bridge 1
Bridge 2

SRAM

APB2

DMA request

USART1
SPI1
TIM1

TIM15

ADC1

CEC

 TIM2

I2C2
I2C1
USART3
USART2

SPI2
TIM7
TIM6
TIM4
TIM3

ai17302

B
us

 m
at

rixDMA

Reset & clock
control (RCC)

TIM16
TIM17 DAC2

DAC1
GPIO

RM0041 Rev 6 35/709

RM0041 Memory and bus architecture

46

In high-density value line devices, the main system consists of:

• Four masters:

– Cortex®-M3 core DCode bus (D-bus) and System bus (S-bus)

– GP-DMA1 & 2 (general-purpose DMA)

• Four slaves:

– Internal SRAM

– Internal flash memory

– FSMC

– AHB to APB bridges (AHB to APBx), which connect all the APB peripherals

These are interconnected using a multilayer AHB bus architecture as shown in Figure 2.

Figure 2. High density value line system architecture

ICode bus

This bus connects the instruction bus of the Cortex®-M3 core to the flash memory
instruction interface. Instruction fetches are performed on this bus.

DCode bus

This bus connects the DCode bus (literal load and debug access) of the Cortex®-M3 core to
the flash memory data interface.

Ch.1

Ch.2

Ch.7

Cortex-M3

DMA1

ICode

DCode

System

AHB system bus

DMA Request

APB1

Flash

Bridge 2
Bridge 1

Ch.1

Ch.2

Ch.5

DMA2

SRAM

FSMC

APB2

DMA request

USART1
SPI1
TIM1

ADC1 SPI2

 TIM2

SPI3
TIM7
TIM6
TIM5
TIM4
TIM3

ai18301

B
us

 m
at

rixDMA

D
M

A Reset & clock
control (RCC)

memory

FLASH
(Flash
inferface)

TIM17
TIM16
TIM15

DAC2

I2C2
I2C1
UART5
UART4
USART3
USART2

DAC1
CEC

 TIM12

TIM14
TIM13

GPIO

Memory and bus architecture RM0041

36/709 RM0041 Rev 6

System bus

This bus connects the system bus of the Cortex®-M3 core (peripherals bus) to a bus matrix
which manages the arbitration between the core and the DMA.

DMA bus

This bus connects the AHB master interface of the DMA to the bus matrix which manages
the access of CPU DCode and DMA to the SRAM, flash memory and peripherals.

Bus matrix

The bus matrix manages the access arbitration between the core system bus and the DMA
master bus. The arbitration uses a round robin algorithm. In low and medium-density value
line devices the bus matrix is composed of three masters (CPU DCode, System bus, DMA1
bus) and three slaves (FLITF, SRAM and AHB to APB bridges).

In high-density value line devices the bus matrix is composed of four masters (CPU DCode,
System bus, DMA1 bus and DMA2 bus) and four slaves (FLITF, SRAM, FSMC and AHB to
APB bridges).

AHB peripherals are connected to the system bus through the bus matrix to allow DMA
access.

AHB/APB bridges (APB)

The two AHB/APB bridges provide full synchronous connections between the AHB and the
two APB buses. APB buses operate at full speed (up to 24 MHz).

Refer to Table 2 for the address mapping of the peripherals connected to each bridge.

After each device reset, all peripheral clocks are disabled (except for the SRAM and FLITF).
Before using a peripheral its clock in the RCC_AHBENR, RCC_APB2ENR or
RCC_APB1ENR register must be enabled.

Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

2.2 Memory organization

Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.

The bytes are coded in memory in little endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte, the most
significant.

For the detailed mapping of peripheral registers, refer to the related sections.

The addressable memory space is divided into 8 main blocks, each of 512 MB.

All the memory areas that are not allocated to on-chip memories and peripherals are
considered “reserved”). Refer to the memory map figure in the corresponding product
datasheet.

RM0041 Rev 6 37/709

RM0041 Memory and bus architecture

46

2.3 Memory map

See the datasheet corresponding to the used device for a comprehensive diagram of the
memory map. Table 1 and Table 2 give the boundary addresses of the peripherals available
in all STM32F100xx devices.

Table 1. Low and medium-density device register boundary addresses

Boundary address Peripheral Bus Register map

0x4002 3000 - 0x4002 33FF CRC

AHB

Section 3.4.4 on page 49

0x4002 2400 - 0x4002 2FFF Reserved -

0x4002 2000 - 0x4002 23FF Flash memory interface -

0x4002 1400 - 0x4002 1FFF Reserved -

0x4002 1000 - 0x4002 13FF Reset and clock control RCC Section 6.3.12 on page 101

0x4002 0400 - 0x4002 0FFF Reserved -

0x4002 0000 - 0x4002 03FF DMA1 Section 9.4.7 on page 159

0x4001 4C00 - 0x4001 FFFF Reserved

APB2

-

0x4001 4800 - 0x4001 4BFF TIM17 timer Section 15.6.16 on page 454

0x4001 4400 - 0x4001 47FF TIM16 timer Section 15.6.16 on page 454

0x4001 4000 - 0x4001 43FF TIM15 timer Section 15.5.18 on page 434

0x4001 3C00 - 0x4001 3FFF Reserved -

0x4001 3800 - 0x4001 3BFF USART1 Section 23.6.8 on page 646

0x4001 3400 - 0x4001 37FF Reserved -

0x4001 3000 - 0x4001 33FF SPI1 Section 21.4.8 on page 565

0x4001 2C00 - 0x4001 2FFF TIM1 timer Section 12.4.21 on page 282

0x4001 2800 - 0x4001 2BFF Reserved -

0x4001 2400 - 0x4001 27FF ADC1 Section 10.11.15 on page 188

0x4001 1C00 - 0x4001 23FF Reserved -

0x4001 1800 - 0x4001 1BFF GPIO Port E Section 7.5 on page 130

0x4001 1400 - 0x4001 17FF GPIO Port D Section 7.5 on page 130

0x4001 1000 - 0x4001 13FF GPIO Port C Section 7.5 on page 130

0x4001 0C00 - 0x4001 0FFF GPIO Port B Section 7.5 on page 130

0x4001 0800 - 0x4001 0BFF GPIO Port A Section 7.5 on page 130

0x4001 0400 - 0x4001 07FF EXTI Section 8.3.7 on page 143

0x4001 0000 - 0x4001 03FF AFIO Section 7.5 on page 130

Memory and bus architecture RM0041

38/709 RM0041 Rev 6

0x4000 7C00 - 0x4000 FFFF Reserved

APB1

-

0x4000 7800 - 0x4000 7BFF CEC Section 24.9.8 on page 668

0x4000 7400 - 0x4000 77FF DAC Section 11.5.15 on page 210

0x4000 7000 - 0x4000 73FF Power control PWR Section 4.4.3 on page 63

0x4000 6C00 - 0x4000 6FFF Backup registers (BKP) Section 5.4.5 on page 69

0x4000 5C00 - 0x4000 6BFF Reserved -

0x4000 5800 - 0x4000 5BFF I2C2 Section 22.6.10 on page 598

0x4000 5400 - 0x4000 57FF I2C1 Section 22.6.10 on page 598

0x4000 4C00 - 0x4000 53FF Reserved -

0x4000 4800 - 0x4000 4BFF USART3 Section 23.6.8 on page 646

0x4000 4400 - 0x4000 47FF USART2 Section 23.6.8 on page 646

0x4000 3C00 - 0x4000 3FFF Reserved -

0x4000 3800 - 0x4000 3BFF SPI2 Section 21.4.8 on page 565

0x4000 3400 - 0x4000 37FF Reserved -

0x4000 3000 - 0x4000 33FF Independent watchdog (IWDG) Section 18.4.5 on page 486

0x4000 2C00 - 0x4000 2FFF Window watchdog (WWDG) Section 19.6.4 on page 493

0x4000 2800 - 0x4000 2BFF RTC Section 17.4.7 on page 480

0x4000 1800 - 0x4000 27FF Reserved -

0x4000 1400 - 0x4000 17FF TIM7 timer Section 16.4.9 on page 468

0x4000 1000 - 0x4000 13FF TIM6 timer Section 16.4.9 on page 468

0x4000 0C00 - 0x4000 0FFF Reserved -

0x4000 0800 - 0x4000 0BFF TIM4 timer Section 13.4.19 on page 340

0x4000 0400 - 0x4000 07FF TIM3 timer Section 13.4.19 on page 340

0x4000 0000 - 0x4000 03FF TIM2 timer Section 13.4.19 on page 340

Table 1. Low and medium-density device register boundary addresses (continued)

Boundary address Peripheral Bus Register map

Table 2. High-density device register boundary addresses

Boundary address Peripheral Bus Register map

0x4002 3000 - 0x4002 33FF CRC

AHB

Section 3.4.4 on page 49

0x4002 2400 - 0x4002 2FFF Reserved -

0x4002 2000 - 0x4002 23FF Flash memory interface -

0x4002 1400 - 0x4002 1FFF Reserved -

0x4002 1000 - 0x4002 13FF Reset and clock control RCC Section 6.3.12 on page 101

0x4002 0800 - 0x4002 0FFF Reserved -

0x4002 0400 - 0x4002 07FF DMA2 Section 9.4.7 on page 159

0x4002 0000 - 0x4002 03FF DMA1 Section 9.4.7 on page 159

RM0041 Rev 6 39/709

RM0041 Memory and bus architecture

46

0x4001 4C00 - 0x4001 FFFF Reserved

APB2

-

0x4001 4800 - 0x4001 4BFF TIM17 timer Section 15.6.16 on page 454

0x4001 4400 - 0x4001 47FF TIM16 timer Section 15.6.16 on page 454

0x4001 4000 - 0x4001 43FF TIM15 timer Section 15.5.18 on page 434

0x4001 3C00 - 0x4001 3FFF Reserved -

0x4001 3800 - 0x4001 3BFF USART1 Section 23.6.8 on page 646

0x4001 3400 - 0x4001 37FF Reserved -

0x4001 3000 - 0x4001 33FF SPI1 Section 21.4.8 on page 565

0x4001 2C00 - 0x4001 2FFF TIM1 timer Section 12.4.21 on page 282

0x4001 2800 - 0x4001 2BFF Reserved -

0x4001 2400 - 0x4001 27FF ADC1 Section 10.11.15 on page 188

0x4001 2000 - 0x4001 23FF GPIO Port G Section 7.5 on page 130

0x4001 1C00 - 0x4001 1FFF GPIO Port F Section 7.5 on page 130

0x4001 1800 - 0x4001 1BFF GPIO Port E Section 7.5 on page 130

0x4001 1400 - 0x4001 17FF GPIO Port D Section 7.5 on page 130

0x4001 1000 - 0x4001 13FF GPIO Port C Section 7.5 on page 130

0x4001 0C00 - 0x4001 0FFF GPIO Port B Section 7.5 on page 130

0x4001 0800 - 0x4001 0BFF GPIO Port A Section 7.5 on page 130

0x4001 0400 - 0x4001 07FF EXTI Section 8.3.7 on page 143

0x4001 0000 - 0x4001 03FF AFIO Section 7.5 on page 130

Table 2. High-density device register boundary addresses (continued)

Boundary address Peripheral Bus Register map

Memory and bus architecture RM0041

40/709 RM0041 Rev 6

2.3.1 Embedded SRAM

The STM32F100xx features up to 32 Kbytes of static SRAM. It can be accessed as bytes,
half-words (16 bits) or full words (32 bits). The SRAM start address is 0x2000 0000.

0x4000 7C00 - 0x4000 FFFF Reserved

APB1

-

0x4000 7800 - 0x4000 7BFF CEC Section 24.9.8 on page 668

0x4000 7400 - 0x4000 77FF DAC Section 11.5.15 on page 210

0x4000 7000 - 0x4000 73FF Power control PWR Section 4.4.3 on page 63

0x4000 6C00 - 0x4000 6FFF Backup registers (BKP) Section 5.4.5 on page 69

0x4000 5C00 - 0x4000 6BFF Reserved -

0x4000 5800 - 0x4000 5BFF I2C2 Section 22.6.10 on page 598

0x4000 5400 - 0x4000 57FF I2C1 Section 22.6.10 on page 598

0x4000 5000 - 0x4000 53FF UART5 Section 23.6.8 on page 646

0x4000 4C00 - 0x4000 4FFF UART4 Section 23.6.8 on page 646

0x4000 4800 - 0x4000 4BFF USART3 Section 23.6.8 on page 646

0x4000 4400 - 0x4000 47FF USART2 Section 23.6.8 on page 646

0x4000 4000 - 0x4000 43FF Reserved -

0x4000 3C00 - 0x4000 3FFF SPI3 Section 21.4.8 on page 565

0x4000 3800 - 0x4000 3BFF SPI2 Section 21.4.8 on page 565

0x4000 3400 - 0x4000 37FF Reserved -

0x4000 3000 - 0x4000 33FF Independent watchdog (IWDG) Section 18.4.5 on page 486

0x4000 2C00 - 0x4000 2FFF Window watchdog (WWDG) Section 18.4.5 on page 486

0x4000 2800 - 0x4000 2BFF RTC Section 17.4.7 on page 480

0x4000 2400 - 0x4000 27FF Reserved -

0x4000 2000 - 0x4000 23FF TIM14 timer Section 14.5.11 on page 387

0x4000 1C00 - 0x4000 1FFF TIM13 timer Section 14.5.11 on page 387

0x4000 1800 - 0x4000 1BFF TIM12 timer Section 14.4.14 on page 377

0x4000 1400 - 0x4000 17FF TIM7 timer Section 16.4.9 on page 468

0x4000 1000 - 0x4000 13FF TIM6 timer Section 16.4.9 on page 468

0x4000 0C00 - 0x4000 0FFF TIM5 timer Section 13.4.19 on page 340

0x4000 0800 - 0x4000 0BFF TIM4 timer Section 13.4.19 on page 340

0x4000 0400 - 0x4000 07FF TIM3 timer Section 13.4.19 on page 340

0x4000 0000 - 0x4000 03FF TIM2 timer Section 13.4.19 on page 340

Table 2. High-density device register boundary addresses (continued)

Boundary address Peripheral Bus Register map

RM0041 Rev 6 41/709

RM0041 Memory and bus architecture

46

2.3.2 Bit banding

The Cortex®-M3 memory map includes two bit-band regions. These regions map each word
in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the
alias region has the same effect as a read-modify-write operation on the targeted bit in the
bit-band region.

In the STM32F100xx, both peripheral registers and SRAM are mapped in a bit-band region.
This allows single bit-band write and read operations to be performed.

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

where:

bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit

bit_band_base is the starting address of the alias region

byte_offset is the number of the byte in the bit-band region that contains the targeted
bit

bit_number is the bit position (0-7) of the targeted bit

Example:

The following example shows how to map bit 2 of the byte located at SRAM address
0x2000 0300 in the alias region:

0x2200 6008 = 0x2200 0000 + (0x300*32) + (2*4).

Writing to address 0x2200 6008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM address 0x2000 0300.

Reading address 0x2200 6008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM
address 0x2000 0300 (0x01: bit set; 0x00: bit cleared).

For more information on bit-banding, refer to the Cortex®-M3 Technical Reference Manual.

2.3.3 Embedded flash memory

The high-performance flash memory module has the following key features:

• Density of up to 512 Kbytes

• Memory organization: the flash memory is organized as a main block and an
information block:

– Main memory block of size:

up to 8 Kbit × 32 bits divided into 32 pages of 1 Kbyte each for low-density value
line devices (see Table 3)

up to 32 Kbit × 32 bits divided into 128 pages of 1 Kbyte each for medium-density
value line devices (see Table 4)

up to 128 Kbit × 32 bits divided into 256 pages of 2 Kbyte each for high-density
value line devices (see Table 5)

– Information block of size:
516 × 32 bits for low, medium and high-density value line devices (see Table 3,
Table 4 and Table 5)

Memory and bus architecture RM0041

42/709 RM0041 Rev 6

The flash memory interface (FLASH) features:

• Read interface (32-bit)

• Option byte loader

• Flash Program/Erase operation

• Read/write protection

Table 3. Flash module organization (low-density value line devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 03FF 1 Kbyte

Page 1 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 2 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 3 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Page 4 0x0800 1000 - 0x0800 13FF 1 Kbyte

.

.

.

.

.

.

.

.

.

Page 31 0x0800 7C00 - 0x0800 8000 1 Kbyte

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

RM0041 Rev 6 43/709

RM0041 Memory and bus architecture

46

Table 4. Flash module organization (medium-density value line devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 03FF 1 Kbyte

Page 1 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 2 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 3 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Page 4 0x0800 1000 - 0x0800 13FF 1 Kbyte

.

.

.

.

.

.

.

.

.

Page 127 0x0801 FC00 - 0x0801 FFFF 1 Kbyte

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

Table 5. Flash module organization (high-density value line devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 07FF 2 Kbytes

Page 1 0x0800 0800 - 0x0800 0FFF 2 Kbytes

Page 2 0x0800 1000 - 0x0800 17FF 2 Kbytes

Page 3 0x0800 1800 - 0x0800 1FFF 2 Kbytes

.

.

.

.

.

.

.

.

.

Page 255 0x0807 F800 - 0x0807 FFFF 2 Kbytes

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

Memory and bus architecture RM0041

44/709 RM0041 Rev 6

Note: For further information on the flash memory interface registers, refer to PM0063.

Reading flash memory

Flash memory accesses are performed through the AHB bus. Accesses are either
instruction fetches over the ICode bus, or data accesses (e.g. literal pool) over the D-code
bus. Since these two buses have the same flash memory as target, the interface gives
priority to D-code bus accesses over I-code bus, instruction fetch accesses.

Read accesses can be performed without any wait state and with the following configuration
options:

• Half cycle: for power optimization

Note: 1 Half cycle configuration is not available in combination with a prescaler on the AHB. The
system clock (SYSCLK) should be equal to the HCLK clock. This feature can therefore be
used only with a low-frequency clock of 8 MHz or less. It can be generated from the HSI or
the HSE but not from the PLL.

2 Using DMA: DMA accesses flash memory on the DCode bus and has priority over ICode
instructions. The DMA provides one free cycle after each transfer. Some instructions can be
performed together with DMA transfer.

Programming and erasing flash memory

The flash memory can be programmed 16 bits (half words) at a time. For write and erase
operations on the flash memory (write/erase), the internal RC oscillator (HSI) must be ON.

The flash memory erase operation can be performed at page level or on the whole area
(mass erase). Mass erase does not affect the information blocks.

To ensure that there is no overprogramming, the flash programming and erase controller
blocks are clocked by a fixed clock.

The end of write operation (programming or erasing) can trigger an interrupt. This interrupt
can be used to exit the WFI mode, only if the FLASH clock is enabled. Otherwise, the
interrupt is served only after exiting WFI.

The FLASH_ACR register is used to enable/disable flash memory half-cycle access. The
tables below provide the bit map and bit descriptions for this register.

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

Table 5. Flash module organization (high-density value line devices) (continued)

Block Name Base addresses Size (bytes)

RM0041 Rev 6 45/709

RM0041 Memory and bus architecture

46

For complete information on flash memory operations and register configurations, refer to
PM00063).

Flash access control register (FLASH_ACR)

Address offset: 0x00
Reset value: 0x0000 0000

2.4 Boot configuration

In the STM32F100xx, three different boot modes can be selected through the BOOT[1:0]
pins as shown in Table 6.

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It
is up to the application to set the BOOT1 and BOOT0 pins after reset to select the required
boot mode.

The BOOT pins are also resampled when exiting the Standby mode. Consequently, they
must be kept in the required boot mode configuration in the Standby mode. After this startup
delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then
starts code execution from the boot memory starting from 0x0000 0004.

Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed
through the ICode/DCode buses) while the data area (SRAM) starts from address
0x2000 0000 (accessed through the system bus). The Cortex-M3 CPU always fetches the
reset vector on the ICode bus, which implies to have the boot space available only in the
code area (typically, flash memory). STM32F100xx microcontrollers implement a special
mechanism to be able to boot also from SRAM and not only from main flash memory and
System memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
HLFCYA

Reserved
rw

Bits 31:4 Reserved, must be kept cleared.

Bit 3 HLFCYA: Flash half cycle access enable

0: Half cycle is disabled
1: Half cycle is enabled

Bits 2:0 Reserved, must be kept cleared.

Table 6. Boot modes

Boot mode selection pins
Boot mode Aliasing

BOOT1 BOOT0

x 0 Main flash memory Main flash memory is selected as the boot space

0 1 System memory System memory is selected as the boot space

1 1 Embedded SRAM Embedded SRAM is selected as the boot space

Memory and bus architecture RM0041

46/709 RM0041 Rev 6

Depending on the boot mode selected, the main flash memory, system memory or SRAM is
accessible as follows:

• Boot from main flash memory: the main flash memory is aliased in the boot memory
space (0x0000 0000), but still accessible from its original memory space (0x800 0000).
In other words, the flash memory contents can be accessed starting from address
0x0000 0000 or 0x800 0000.

• Boot from system memory: the system memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space (0x1FFF F000).

• Boot from the embedded SRAM: SRAM is accessible only at address 0x2000 0000.

Note: When booting from SRAM, in the application initialization code, the vector table in SRAM
must be relocated using the NVIC exception table and offset register.

Embedded boot loader

The embedded boot loader is used to reprogram the flash memory using the USART1 serial
interface. This program is located in the system memory and is programmed by ST during
production. For further details refer to AN2606.

RM0041 Rev 6 47/709

RM0041 CRC calculation unit

49

3 CRC calculation unit

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

3.1 CRC introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.

3.2 CRC main features

• Uses CRC-32 polynomial: 0x4C11DB7

– X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X + 1

• Single input/output 32-bit data register

• CRC computation done in 4 AHB clock cycles (HCLK)

• General-purpose 8-bit register (can be used for temporary storage)

The block diagram is shown in Figure 3.

Figure 3. CRC calculation unit block diagram

AHB bus

32-bit (read access)

Data register (output)

CRC computation (polynomial: 0x4C11DB7)

32-bit (write access)

Data register (input)

ai14968

CRC calculation unit RM0041

48/709 RM0041 Rev 6

3.3 CRC functional description

The CRC calculation unit mainly consists of a single 32-bit data register, which:

• is used as an input register to enter new data in the CRC calculator (when writing into
the register)

• holds the result of the previous CRC calculation (when reading the register)

Each write operation into the data register creates a combination of the previous CRC value
and the new one (CRC computation is done on the whole 32-bit data word, and not byte per
byte).

The write operation is stalled until the end of the CRC computation, thus allowing back-to-
back write accesses or consecutive write and read accesses.

The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the
CRC_CR register. This operation does not affect the contents of the CRC_IDR register.

3.4 CRC registers

The CRC calculation unit contains two data registers and a control register.The peripheral
The CRC registers have to be accessed by words (32 bits).

3.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

3.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR [15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Data register bits

Used as an input register when writing new data into the CRC calculator.
Holds the previous CRC calculation result when it is read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
IDR[7:0]

rw rw rw rw rw rw rw rw

RM0041 Rev 6 49/709

RM0041 CRC calculation unit

49

3.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

3.4.4 CRC register map

The following table provides the CRC register map and reset values.

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 General-purpose 8-bit data register bits

Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESET

w

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 RESET bit

Resets the CRC calculation unit and sets the data register to 0xFFFF FFFF.
This bit can only be set, it is automatically cleared by hardware.

Table 7. CRC calculation unit register map and reset values

Offset Register 31-24 23-16 15-8 7 6 5 4 3 2 1 0

0x00

CRC_DR Data register

Reset
value

0xFFFF FFFF

0x04

CRC_IDR

Reserved

Independent data register

Reset
value

0x00

0x08

CRC_CR

Reserved

RESET

Reset
value

0

Power control (PWR) RM0041

50/709 RM0041 Rev 6

4 Power control (PWR)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

4.1 Power supplies

The device requires a 2.0 to 3.6 V operating voltage supply (VDD). An embedded regulator
is used to supply the internal 1.8 V digital power.

The real-time clock (RTC) and backup registers can be powered from the VBAT voltage
when the main VDD supply is powered off.

Figure 4. Power supply overview

1. VDDA and VSSA must be connected to VDD and VSS, respectively.

A/D converter

VDDA

VDD

VSSA

VREF+

VBAT

VSS

I/O Ring

(VDD)

(from 2.4 V up to VDDA)

BKP registers

Temp. sensor
Reset block

Standby circuitry

PLL

(Wakeup logic,
IWDG)

RTC

Voltage Regulator

Core
Memories

digital
 peripherals

Low voltage detector

VREF-

VDDA domain

VDD domain 1.8 V domain

Backup domain

LSE crystal 32K osc

RCC BDCR register

(VSSA)

(VSS)

D/A converter

RM0041 Rev 6 51/709

RM0041 Power control (PWR)

63

4.1.1 Independent A/D and D/A converter supply and reference voltage

To improve conversion accuracy, the ADC and the DAC have an independent power supply
that can be separately filtered and shielded from noise on the PCB.

• The ADC and DAC voltage supply input is available on a separate VDDA pin.

• An isolated supply ground connection is provided on pin VSSA.

When available (according to package), VREF- must be tied to VSSA.

On 100-pin packages

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect a
separate external reference voltage on VREF+. VREF+ is the highest voltage, represented by
the full scale value, for an analog input (ADC) or output (DAC) signal. The voltage on VREF+
can range from 2.4 V to VDDA.

On 64-pin packages and packages with less pins

The VREF+ and VREF- pins are not available, they are internally connected to the ADC
voltage supply (VDDA) and ground (VSSA).

4.1.2 Battery backup domain

To retain the content of the Backup registers and supply the RTC function when VDD is
turned off, VBAT pin can be connected to an optional standby voltage supplied by a battery
or by another source.

The VBAT pin powers the RTC unit, the LSE oscillator and the PC13 to PC15 IOs, allowing
the RTC to operate even when the main digital supply (VDD) is turned off. The switch to the
VBAT supply is controlled by the Power Down Reset embedded in the Reset block.

Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR
is detected, the power switch between VBAT and VDD remains
connected to VBAT.
During the startup phase, if VDD is established in less than
tRSTTEMPO (Refer to the datasheet for the value of tRSTTEMPO)
and VDD > VBAT + 0.6 V, a current may be injected into VBAT
through an internal diode connected between VDD and the
power switch (VBAT).
If the power supply/battery connected to the VBAT pin cannot
support this current injection, it is strongly recommended to
connect an external low-drop diode between this power
supply and the VBAT pin.

If no external battery is used in the application, it is recommended to connect VBAT
externally to VDD with a 100 nF external ceramic decoupling capacitor (for more details refer
to AN2586).

Power control (PWR) RM0041

52/709 RM0041 Rev 6

When the backup domain is supplied by VDD (analog switch connected to VDD), the
following functions are available:

• PC14 and PC15 can be used as either GPIO or LSE pins

• PC13 can be used as GPIO, TAMPER pin, RTC Calibration Clock, RTC Alarm or
second output (refer to Section 5: Backup registers (BKP))

Note: Because the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to
PC15 in output mode is restricted: the speed has to be limited to 2 MHz with a maximum
load of 30 pF and these IOs must not be used as a current source (e.g. to drive a LED).

When the backup domain is supplied by VBAT (analog switch connected to VBAT because
VDD is not present), the following functions are available:

• PC14 and PC15 can be used as LSE pins only

• PC13 can be used as TAMPER pin, RTC Alarm or Second output (refer to
Section 5.4.2: RTC clock calibration register (BKP_RTCCR)).

4.1.3 Voltage regulator

The voltage regulator is always enabled after Reset. It works in three different modes
depending on the application modes.

• In Run mode, the regulator supplies full power to the 1.8 V domain (core, memories
and digital peripherals).

• In Stop mode the regulator supplies low-power to the 1.8 V domain, preserving
contents of registers and SRAM

• In Standby mode, the regulator is powered off. The contents of the registers and SRAM
are lost except for the Standby circuitry and the Backup Domain.

4.2 Power supply supervisor

4.2.1 Power on reset (POR)/power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting
from/down to 2 V.

The device remains in Reset mode when VDD/VDDA is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit. For more details concerning the
power on/power down reset threshold, refer to the electrical characteristics of the datasheet.

RM0041 Rev 6 53/709

RM0041 Power control (PWR)

63

Figure 5. Power on reset/power down reset waveform

4.2.2 Programmable voltage detector (PVD)

The PVD can be used to monitor the VDD/VDDA power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the Power control register (PWR_CR).

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the Power control/status register (PWR_CSR), to indicate if
VDD/VDDA is higher or lower than the PVD threshold. This event is internally connected to
the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The
PVD output interrupt can be generated when VDD/VDDA drops below the PVD threshold
and/or when VDD/VDDA rises above the PVD threshold depending on EXTI line16
rising/falling edge configuration. As an example the service routine could perform
emergency shutdown tasks.

VDD/VDDA

40 mV
hysteresis

PDR

PDR

MS30431V2

Reset

Temporization
tRSTTEMPO

VPOR/PDR
rising edge

VPOR/PDR
falling edge

Power control (PWR) RM0041

54/709 RM0041 Rev 6

Figure 6. PVD thresholds

MS30432V3

VDD

100 mV
hysteresis

PVD threshold

PVD output

VPVD
rising edge

VPVD
falling edge

RM0041 Rev 6 55/709

RM0041 Power control (PWR)

63

4.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power Reset. Several low-
power modes are available to save power when the CPU does not need to be kept running,
for example when waiting for an external event. It is up to the user to select the mode that
gives the best compromise between low-power consumption, short startup time and
available wakeup sources.

The STM32F100xx devices feature three low-power modes:

• Sleep mode (CPU clock off, all peripherals including Cortex®-M3 core peripherals like
NVIC, SysTick, are kept running)

• Stop mode (all clocks are stopped)

• Standby mode (1.8V domain powered-off)

In addition, the power consumption in Run mode can be reduced by one of the following
means:

• Slowing down the system clocks

• Gating the clocks to the APB and AHB peripherals when they are unused.

4.3.1 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 7.3.2: Clock configuration register (RCC_CFGR).

Table 8. Low-power mode summary

Mode name Entry Wakeup
Effect on 1.8V
domain clocks

Effect on VDD
domain clocks

Voltage regulator

Sleep
(Sleep now or
Sleep-on -exit)

WFI Any interrupt CPU clock OFF
no effect on other
clocks or analog
clock sources

None ON
WFE Wakeup event

Stop
PDDS and LPDS
bits + SLEEPDEEP
bit + WFI or WFE

Any EXTI line
(configured in the
EXTI registers)

All 1.8V domain
clocks OFF

HSI and HSE
oscillators OFF

ON or in
low-power mode
(depends on Power
control register
(PWR_CR))

Standby
PDDS bit +
SLEEPDEEP bit +
WFI or WFE

WKUP pin rising
edge, RTC alarm,
external reset in
NRST pin,
IWDG reset

OFF

Power control (PWR) RM0041

56/709 RM0041 Rev 6

4.3.2 Peripheral clock gating

In Run mode, the HCLK and PCLKx for individual peripherals and memories can be stopped
at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the , APB1 peripheral clock enable register
(RCC_APB1ENR) and APB2 peripheral clock enable register (RCC_APB2ENR).

4.3.3 Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the Cortex®-M3 System Control register:

• Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

• Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

In the Sleep mode, all I/O pins keep the same state as in the Run mode.

Refer to Table 9 and Table 10 for details on how to enter Sleep mode.

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by
the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode.

If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as
an event occurs. The wakeup event can be generated either by:

• enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

• or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

This mode offers the lowest wakeup time as no time is wasted in interrupt entry/exit.

Refer to Table 9 and Table 10 for more details on how to exit Sleep mode.

RM0041 Rev 6 57/709

RM0041 Power control (PWR)

63

4.3.4 Stop mode

The Stop mode is based on the Cortex®-M3 deepsleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
oscillators are disabled. SRAM and register contents are preserved.

In the Stop mode, all I/O pins keep the same state as in the Run mode.

Entering Stop mode

Refer to Table 11 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPDS bit of the Power control register
(PWR_CR).

If flash memory programming is ongoing, the Stop mode entry is delayed until the memory
access is finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB
access is finished.

Table 9. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex®-M3 System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 50: Vector table for STM32F100xx devices

If WFE was used for entry

Wakeup event: Refer to Section 8.2.3: Wakeup event management

Wakeup latency None

Table 10. Sleep-on-exit

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the Cortex®-M3 System Control register.

Mode exit Interrupt: refer to Table 50: Vector table for STM32F100xx devices.

Wakeup latency None

Power control (PWR) RM0041

58/709 RM0041 Rev 6

In Stop mode, the following features can be selected by programming individual control bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. See
Section 18.3: IWDG functional description.

• Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR)

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
Backup domain control register (RCC_BDCR).

The ADC or DAC can also consume power during the Stop mode, unless they are disabled
before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit
in the DAC_CR register must both be written to 0.

Note: If the application needs to disable the external clock before entering Stop mode, the HSEON
bit must first be disabled and the system clock switched to HSI. Otherwise, if the HSEON bit
remains enabled and the external clock (external oscillator) is removed when entering Stop
mode, the clock security system (CSS) feature must be enabled to detect any external
oscillator failure and avoid a malfunction behavior when entering stop mode.

Exiting Stop mode

Refer to Table 11 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is
selected as system clock.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

Table 11. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP bit in Cortex®-M3 System Control register

– Clear PDDS bit in Power Control register (PWR_CR)

– Select the voltage regulator mode by configuring LPDS bit in PWR_CR

Note: To enter Stop mode, all EXTI Line pending bits (in Pending register
(EXTI_PR)), all peripheral interrupt pending bits, and RTC Alarm flag must
be reset. Otherwise, the Stop mode entry procedure is ignored and
program execution continues.

Mode exit

If WFI was used for entry:

Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). Refer to Table 50: Vector
table for STM32F100xx devices.

If WFE was used for entry:

Any EXTI Line configured in event mode. Refer to Section 8.2.3: Wakeup
event management

Wakeup latency HSI RC wakeup time + regulator wakeup time from Low-power mode

RM0041 Rev 6 59/709

RM0041 Power control (PWR)

63

4.3.5 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex®-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
switched off. SRAM and register contents are lost except for registers in the Backup domain
and Standby circuitry (see Figure 4).

Entering Standby mode

Refer to Table 12 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. See
Section 18.3: IWDG functional description.

• Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR)

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
Backup domain control register (RCC_BDCR)

Exiting Standby mode

The microcontroller exits the Standby mode when an external reset (NRST pin), an IWDG
reset, a rising edge on the WKUP pin or the rising edge of an RTC alarm occurs (see
Figure 196: RTC simplified block diagram). All registers are reset after wakeup from
Standby except for Power control/status register (PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the Power
control/status register (PWR_CSR) indicates that the MCU was in Standby mode.

Refer to Table 12 for more details on how to exit Standby mode.

Table 12. Standby mode

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP in Cortex®-M3 System Control register

– Set PDDS bit in Power Control register (PWR_CR)

– Clear WUF bit in Power Control/Status register (PWR_CSR)

– No interrupt (for WFI) or event (for WFI) is pending

Mode exit
WKUP pin rising edge, RTC alarm event’s rising edge, external Reset in
NRST pin, IWDG Reset.

Wakeup latency Reset phase

Power control (PWR) RM0041

60/709 RM0041 Rev 6

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except:

• Reset pad (still available)

• TAMPER pin if configured for tamper or calibration out

• WKUP pin, if enabled

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex®-M3 core is
no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 25.15.1: Debug support for low-power modes.

4.3.6 Auto-wakeup (AWU) from low-power mode

The RTC can be used to wakeup the MCU from low-power mode without depending on an
external interrupt (Auto-wakeup mode). The RTC provides a programmable time base for
waking up from Stop or Standby mode at regular intervals. For this purpose, two of the three
alternative RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the
Backup domain control register (RCC_BDCR):

• Low-power 32.768 kHz external crystal oscillator (LSE OSC).
This clock source provides a precise time base with very low-power consumption (less
than 1µA added consumption in typical conditions)

• Low-power internal RC Oscillator (LSI RC)
This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to add minimum power consumption.

To wakeup from Stop mode with an RTC alarm event, it is necessary to:

• Configure the EXTI Line 17 to be sensitive to rising edge

• Configure the RTC to generate the RTC alarm

To wakeup from Standby mode, there is no need to configure the EXTI Line 17.

4.4 Power control registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

4.4.1 Power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBP PLS[2:0] PVDE CSBF CWUF PDDS LPDS

rw rw rw rw rw rc_w1 rc_w1 rw rw

RM0041 Rev 6 61/709

RM0041 Power control (PWR)

63

Bits 31:9 Reserved, must be kept at reset value..

Bit 8 DBP: Disable backup domain write protection.

In reset state, the RTC and backup registers are protected against parasitic write access.
This bit must be set to enable write access to these registers.
0: Access to RTC and Backup registers disabled
1: Access to RTC and Backup registers enabled

Note: If the HSE divided by 128 is used as the RTC clock, this bit must remain set to 1.

Bits 7:5 PLS[2:0]: PVD level selection.

These bits are written by software to select the voltage threshold detected by the
programmable voltage detector

000: 2.2V
001: 2.3V
010: 2.4V
011: 2.5V
100: 2.6V
101: 2.7V
110: 2.8V
111: 2.9V

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: programmable voltage detector enable.

This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag.

This bit is always read as 0.

0: No effect
1: Clear the SBF Standby Flag (write).

Bit 2 CWUF: Clear wakeup flag.

This bit is always read as 0.

0: No effect
1: Clear the WUF Wakeup Flag after 2 System clock cycles. (write)

Bit 1 PDDS: Power down deepsleep.

This bit is set and cleared by software. It works together with the LPDS bit.

0: Enter Stop mode when the CPU enters Deepsleep. The regulator status depends on the
LPDS bit.
1: Enter Standby mode when the CPU enters Deepsleep.

Bit 0 LPDS: Low-power deepsleep.

This bit is set and cleared by software. It works together with the PDDS bit.

0: Voltage regulator on during Stop mode
1: Voltage regulator in low-power mode during Stop mode

Power control (PWR) RM0041

62/709 RM0041 Rev 6

4.4.2 Power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0000 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWUP

Reserved
PVDO SBF WUF

rw r r r

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 EWUP: Enable WKUP pin

This bit is set and cleared by software.

0: WKUP pin is used for general purpose I/O. An event on the WKUP pin does not wakeup
the device from Standby mode.
1: WKUP pin is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin wakes-up the system from Standby mode).

Note: This bit is reset by a system Reset.

Bits 7:3 Reserved, must be kept at reset value.

Bit 2 PVDO: PVD output

This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: VDD/VDDA is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD/VDDA is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag

This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down reset)
or by setting the CSBF bit in the Power control register (PWR_CR)

0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag

This bit is set by hardware and cleared by hardware, by a system reset or by setting the
CWUF bit in the Power control register (PWR_CR)
0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm

Note: An additional wakeup event is detected if the WKUP pin is enabled (by setting the
EWUP bit) when the WKUP pin level is already high.

RM0041 Rev 6 63/709

RM0041 Power control (PWR)

63

4.4.3 PWR register map

The following table summarizes the PWR registers.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 13. PWR register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved D
B

P PLS
[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

LP
D

S

Reset value 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

Reserved

E
W

U
P

Reserved

P
V

D
O

S
B

F
W

U
F

Reset value 0 0 0 0

Backup registers (BKP) RM0041

64/709 RM0041 Rev 6

5 Backup registers (BKP)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

5.1 BKP introduction

The backup registers are ten 16-bit registers in low and medium density devices, 42
registers in high-density devices for storing 20 or 84 bytes of user application data.

They are implemented in the backup domain that remains powered on by VBAT when the
VDD power is switched off. They are not reset when the device wakes up from Standby
mode or by a system reset or power reset.

In addition, the BKP control registers are used to manage the Tamper detection feature and
RTC calibration.

After reset, access to the Backup registers and RTC is disabled and the Backup domain
(BKP) is protected against possible parasitic write access. To enable access to the Backup
registers and the RTC, proceed as follows:

• enable the power and backup interface clocks by setting the PWREN and BKPEN bits
in the RCC_APB1ENR register

• set the DBP bit in the Power control register (PWR_CR) to enable access to the
Backup registers and RTC.

5.2 BKP main features

• 20-byte data registers (in low and medium-density devices) or 40-byte data registers (in
high-density devices)

• Status/control register for managing tamper detection with interrupt capability

• Calibration register for storing the RTC calibration value

• Possibility to output the RTC Calibration Clock, RTC Alarm pulse or Second pulse on
TAMPER pin PC13 (when this pin is not used for tamper detection)

RM0041 Rev 6 65/709

RM0041 Backup registers (BKP)

70

5.3 BKP functional description

5.3.1 Tamper detection

The TAMPER pin generates a Tamper detection event when the pin changes from 0 to 1 or
from 1 to 0 depending on the TPAL bit in the Backup control register (BKP_CR). A tamper
detection event resets all data backup registers.

However to avoid losing Tamper events, the signal used for edge detection is logically
ANDed with the Tamper enable in order to detect a Tamper event in case it occurs before
the TAMPER pin is enabled.

• When TPAL=0: If the TAMPER pin is already high before it is enabled (by setting TPE
bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled (while
there was no rising edge on the TAMPER pin after TPE was set)

• When TPAL=1: If the TAMPER pin is already low before it is enabled (by setting the
TPE bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled
(while there was no falling edge on the TAMPER pin after TPE was set)

By setting the TPIE bit in the BKP_CSR register, an interrupt is generated when a Tamper
detection event occurs.

After a Tamper event has been detected and cleared, the TAMPER pin should be disabled
and then re-enabled with TPE before writing to the backup data registers (BKP_DRx) again.
This prevents software from writing to the backup data registers (BKP_DRx), while the
TAMPER pin value still indicates a Tamper detection. This is equivalent to a level detection
on the TAMPER pin.

Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the data backup registers, the TAMPER pin should be externally tied to the correct level.

5.3.2 RTC calibration

For measurement purposes, the RTC clock with a frequency divided by 64 can be output on
the TAMPER pin. This is enabled by setting the CCO bit in the RTC clock calibration register
(BKP_RTCCR).

The clock can be slowed down by up to 121 ppm by configuring CAL[6:0] bits.

For more details about RTC calibration and how to use it to improve timekeeping accuracy,
refer to AN2604 "STM32F101xx and STM32F103xx RTC calibration”.

Backup registers (BKP) RM0041

66/709 RM0041 Rev 6

5.4 BKP registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

5.4.1 Backup data register x (BKP_DRx) (x = 1 ..20)

Address offset: 0x04 to 0x28, 0x40 to 0x64

Reset value: 0x0000 0000

5.4.2 RTC clock calibration register (BKP_RTCCR)

Address offset: 0x2C

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 D[15:0] Backup data

These bits can be written with user data.

Note: The BKP_DRx registers are not reset by a System reset or Power reset or when the
device wakes up from Standby mode. They are reset by a Backup Domain reset or by a
TAMPER pin event (if the TAMPER pin function is activated).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ASOS ASOE CCO CAL[6:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 ASOS: Alarm or second output selection

When the ASOE bit is set, the ASOS bit can be used to select whether the signal output on
the TAMPER pin is the RTC Second pulse signal or the Alarm pulse signal:
0: RTC Alarm pulse output selected
1: RTC Second pulse output selected

Note: This bit is reset only by a Backup domain reset.

RM0041 Rev 6 67/709

RM0041 Backup registers (BKP)

70

5.4.3 Backup control register (BKP_CR)

Address offset: 0x30

Reset value: 0x0000 0000

Note: Setting the TPAL and TPE bits at the same time is always safe, however resetting both at
the same time can generate a spurious Tamper event. For this reason it is recommended to
change the TPAL bit only when the TPE bit is reset.

5.4.4 Backup control/status register (BKP_CSR)

Address offset: 0x34

Reset value: 0x0000 0000

Bit 8 ASOE: Alarm or second output enable

Setting this bit outputs either the RTC Alarm pulse signal or the Second pulse signal on the
TAMPER pin depending on the ASOS bit.
The output pulse duration is one RTC clock period. The TAMPER pin must not be enabled
while the ASOE bit is set.

Note: This bit is reset only by a Backup domain reset.

Bit 7 CCO: Calibration clock output

0: No effect
1: Setting this bit outputs the RTC clock with a frequency divided by 64 on the TAMPER pin.
The TAMPER pin must not be enabled while the CCO bit is set in order to avoid unwanted
Tamper detection.

Note: This bit is reset when the VDD supply is powered off.

Bit 6:0 CAL[6:0]: Calibration value

This value indicates the number of clock pulses that will be ignored every 2^20 clock pulses.
This allows the calibration of the RTC, slowing down the clock by steps of 1000000/2^20
PPM.
The clock of the RTC can be slowed down from 0 to 121PPM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TPAL TPE

rw rw

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 TPAL: TAMPER pin active level

0: A high level on the TAMPER pin resets all data backup registers (if TPE bit is set).
1: A low level on the TAMPER pin resets all data backup registers (if TPE bit is set).

Bit 0 TPE: TAMPER pin enable

0: The TAMPER pin is free for general purpose I/O
1: Tamper alternate I/O function is activated.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TIF TEF

Reserved
TPIE CTI CTE

r r rw w w

Backup registers (BKP) RM0041

68/709 RM0041 Rev 6

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 TIF: Tamper interrupt flag

This bit is set by hardware when a Tamper event is detected and the TPIE bit is set. It is
cleared by writing 1 to the CTI bit (also clears the interrupt). It is also cleared if the TPIE bit is
reset.
0: No Tamper interrupt
1: A Tamper interrupt occurred

Note: This bit is reset only by a system reset and wakeup from Standby mode.

Bit 8 TEF: Tamper event flag

This bit is set by hardware when a Tamper event is detected. It is cleared by writing 1 to the
CTE bit.
0: No Tamper event
1: A Tamper event occurred

Note: A Tamper event resets all the BKP_DRx registers. They are held in reset as long as the
TEF bit is set. If a write to the BKP_DRx registers is performed while this bit is set, the
value will not be stored.

Bits 7:3 Reserved, must be kept at reset value.

Bit 2 TPIE: TAMPER pin interrupt enable

0: Tamper interrupt disabled
1: Tamper interrupt enabled (the TPE bit must also be set in the BKP_CR register

Note: A Tamper interrupt does not wake up the core from low-power modes.

This bit is reset only by a system reset and wakeup from Standby mode.

Bit 1 CTI: Clear tamper interrupt

This bit is write only, and is always read as 0.
0: No effect
1: Clear the Tamper interrupt and the TIF Tamper interrupt flag.

Bit 0 CTE: Clear tamper event

This bit is write only, and is always read as 0.
0: No effect
1: Reset the TEF Tamper event flag (and the Tamper detector)

RM0041 Rev 6 69/709

RM0041 Backup registers (BKP)

70

5.4.5 BKP register map

BKP registers are mapped as 16-bit addressable registers as described in the table below:

Table 14. BKP register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00 Reserved

0x04
BKP_DR1

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
BKP_DR2

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
BKP_DR3

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
BKP_DR4

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
BKP_DR5

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
BKP_DR6

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
BKP_DR7

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
BKP_DR8

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
BKP_DR9

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
BKP_DR10

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
BKP_RTCCR

Reserved

A
S

O
S

A
S

O
E

C
C

O CAL[6:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x30
BKP_CR

Reserved T
P

A
L

T
P

E

Reset value 0 0

0x34
BKP_CSR

Reserved T
IF

T
E

F

Reserved T
P

IE

C
T

I

C
T

E

Reset value 0 0 0 0 0

Backup registers (BKP) RM0041

70/709 RM0041 Rev 6

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

0x38 to
0x3C

Reserved

0x40
BKP_DR11

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
BKP_DR12

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
BKP_DR13

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
BKP_DR14

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
BKP_DR15

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
BKP_DR16

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x58
BKP_DR17

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x5C
BKP_DR18

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x60
BKP_DR19

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x64
BKP_DR20

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 14. BKP register map and reset values (continued)

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0041 Rev 6 71/709

RM0041 Reset and clock control (RCC)

101

6 Reset and clock control (RCC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to all STM32F100xx devices, unless otherwise specified.

6.1 Reset

There are three types of reset, defined as system Reset, power Reset and backup domain
Reset.

6.1.1 System reset

A system reset sets all registers to their reset values except the reset flags in the clock
controller CSR register and the registers in the Backup domain (see Figure 4).

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)

2. Window watchdog end of count condition (WWDG reset)

3. Independent watchdog end of count condition (IWDG reset)

4. A software reset (SW reset) (see Software reset)

5. Low-power management reset (see Low-power management reset)

The reset source can be identified by checking the reset flags in the Control/Status register,
RCC_CSR (see Section 6.3.10: Control/status register (RCC_CSR)).

Software reset

The SYSRESETREQ bit in Cortex®-M3 Application Interrupt and Reset Control Register
must be set to force a software reset on the device. Refer to the Cortex®-M3 technical
reference manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:

1. Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in User Option Bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

2. Reset when entering Stop mode:

This type of reset is enabled by resetting NRST_STOP bit in User Option Bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

For further information on the User Option Bytes, refer to PM0063.

Reset and clock control (RCC) RM0041

72/709 RM0041 Rev 6

6.1.2 Power reset

A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset)

2. When exiting Standby mode

A power reset sets all registers to their reset values except the Backup domain (see
Figure 4)

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map. For more
details, refer to Table 51: External interrupt/event controller register map and reset values
on page 143.

The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 µs for each internal reset
source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.

Figure 7. Simplified diagram of the reset circuit

6.1.3 Backup domain reset

The backup domain has two specific resets that affect only the backup domain (see
Figure 4).

A backup domain reset is generated when one of the following events occurs:

1. Software reset, triggered by setting the BDRST bit in the Backup domain control
register (RCC_BDCR).

2. VDD or VBAT power on, if both supplies have previously been powered off.

6.2 Clocks

Three different clock sources can be used to drive the system clock (SYSCLK):

• HSI oscillator clock

• HSE oscillator clock

• PLL clock

NRST

RPU

VDD/VDDA

WWDG reset
IWDG resetPulse

generator Power reset

External
reset

(min 20 μs)

System resetFilter

Software reset
Low-power management reset

ai16095c

RM0041 Rev 6 73/709

RM0041 Reset and clock control (RCC)

101

The devices have the following two secondary clock sources:

• 40 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop/Standby mode.

• 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Figure 8. STM32F100xx clock tree (low and medium-density devices)

1. For full details about the internal and external clock source characteristics, refer to the “Electrical
characteristics” section in the device datasheet.

HSE OSC
4-24 MHz

OSC_IN

OSC_OUT

OSC32_IN

OSC32_OUT

LSE OSC
32.768 kHz

HSI RC
8 MHz

LSI RC
40 kHz

to independent watchdog (IWDG)

PLL
x2, x3, x4

PLLMUL

HSE = High-speed external clock signal

LSE = Low -speed external clock signal
LSI = Low-speed internal clock signal
HSI = High-speed internal clock signal

Legend:

MCO
cloc k out put
Main

..., x16 AHB
Prescaler
/1, 2..512

/2 PLLCLK

HSI

HSE

APB1
Prescaler

/1, 2, 4, 8, 16

ADC
Prescaler
/2, 4, 6, 8 ADCCLK 12 MHz max

PCLK1

HCLK

PLLCLK

to AHB bus, core,
memory and DMA

to ADC1
LSE

LSI

HSI

/128

/2

HSI

HSE
peripherals
to APB1

Peripheral Clock
Enable

Enable
Peripheral Clock

APB2
Prescaler

/1, 2, 4, 8, 16

PCLK2

TIM1/15/16/17 timers
to TIM1, TIM15,
TIM16 and TIM17

peripherals to APB2
Peripheral Clock
Enable

Enable
Peripheral Clock

24 MHz max

24 MHz

24 MHz max

24 MHz max

to RTC

PLLSRC SW

MCO

CSS

to Cortex System timer/8
Clock
Enable

SYSCLK

 max

RTCCLK

RTCSEL[1:0]

TIMxCLK

TIMxCLK

IWDGCLK

SYSCLK

FCLK Cortex
free running clock

TIM2,3,4,6,7
to TIM2,3,4,6 and 7

ai17311

If (APB1 prescaler =1) x1
else x2

If (APB2 prescaler =1) x1
else x2

PREDIV1
/1/2/3.../
.../15/16

to Flash programming interface
FLITFCLK

Reset and clock control (RCC) RM0041

74/709 RM0041 Rev 6

Figure 9. STM32F100xx clock tree (high-density devices)

Several prescalers allow the configuration of the AHB frequency, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB,
APB1 and APB2 domains is 24 MHz.

The RCC feeds the Cortex System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock
(HCLK), configurable in the SysTick Control and Status Register. ADC1 is clocked by the
clock of the High Speed domain (APB2) divided by 2, 4, 6 or 8.

The flash memory programming interface clock (FLITFCLK) is always the HSI clock.

The timer clock frequencies are automatically fixed by hardware. There are two cases:

1. if the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

FCLK acts as Cortex®-M3 free running clock. For more details refer to the Arm Cortex®-M3
Technical Reference

HSE OSC
4-24 MHz

OSC_IN

OSC_OUT

OSC32_IN

OSC32_OUT

LSE OSC
32.768 kHz

HSI RC
8 MHz

LSI RC
40 kHz

to independent watchdog (IWDG)

PLL
x2, x3, x4

PLLMUL

HSE = High-speed external clock signal

LSE = Low -speed external clock signal
LSI = Low-speed internal clock signal
HSI = High-speed internal clock signal

Legend:

MCO
cloc k out put
Main

..., x16 AHB
Prescaler
/1, 2..512

/2 PLLCLK

HSI

HSE

APB1
Prescaler

/1, 2, 4, 8, 16

ADC
Prescaler
/2, 4, 6, 8 ADCCLK 12 MHz max

PCLK1

HCLK

PLLCLK

to AHB bus, core,
memory and DMA

to ADC1
LSE

LSI

HSI

/128

/2

HSI

HSE
peripherals
to APB1

Peripheral Clock
Enable

Enable
Peripheral Clock

APB2
Prescaler

/1, 2, 4, 8, 16

PCLK2

TIM1/15/16/17 timers
to TIM1, TIM15,
TIM16 and TIM17

peripherals to APB2
Peripheral Clock
Enable

Enable
Peripheral Clock

24 MHz max

24 MHz

24 MHz max

24 MHz max

to RTC

PLLSRC SW

MCO

CSS

to Cortex System timer/8
Clock
Enable

SYSCLK

 max

RTCCLK

RTCSEL[1:0]

TIMxCLK

TIMxCLK

IWDGCLK

SYSCLK

FCLK Cortex
free running clock

ai18302

If (APB1 prescaler =1) x1
else x2

If (APB2 prescaler =1) x1
else x2

PREDIV1
/1/2/3.../
.../15/16

Enable

FSMCLK to FSMCPeripheral clock

TIM2,3,4,5,6,7,12,13,14 to TIM2,3,4,5,6,7,12,13,14

to Flash programming interface
FLITFCLK

RM0041 Rev 6 75/709

RM0041 Reset and clock control (RCC)

101

Manual.http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1
_trm.pdf

6.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

• HSE external crystal/ceramic resonator

• HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
24 MHz. This mode is selected by setting the HSEBYP and HSEON bits in the Clock control
register (RCC_CR). The external clock signal (square, sinus or triangle) with ~50% duty
cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-Z. See
Figure 10.

Figure 10. HSE/ LSE clock sources

Clock source Hardware configuration

External clock

Crystal/Ceramic
resonators

OSC_OUT

External
source

(HiZ)

OSC_IN OSC_OUT

Load
capacitors

CL2CL1

Reset and clock control (RCC) RM0041

76/709 RM0041 Rev 6

External crystal/ceramic resonator (HSE crystal)

The 4 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 10. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag in the Clock control register (RCC_CR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the Clock interrupt register
(RCC_CIR).

The HSE Crystal can be switched on and off using the HSEON bit in the Clock control
register (RCC_CR).

6.2.2 HSI clock

The HSI clock signal is generated from an internal 8 MHz RC Oscillator and can be used
directly as a system clock or divided by 2 to be used as PLL input.

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at TA=25°C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Clock control
register (RCC_CR).

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. The HSI frequency can be trimmed in the application using the
HSITRIM[4:0] bits in the Clock control register (RCC_CR).

The HSIRDY flag in the Clock control register (RCC_CR) indicates if the HSI RC is stable or
not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSION bit in the Clock control register
(RCC_CR).

The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 6.2.7: Clock security system (CSS) on page 78.

6.2.3 PLL

The internal PLL can be used to multiply the HSI RC output or HSE oscillator divided by
1..16 output clock frequency. Refer to Figure 8 and Clock control register (RCC_CR).

The PLL configuration (selection of HSI oscillator divided by 2 or HSE oscillator for PLL
input clock, and multiplication factor) must be done before enabling the PLL. Once the PLL
enabled, these parameters cannot be changed.

Note: The PLL output frequency must be in the range of 16-24 MHz.

RM0041 Rev 6 77/709

RM0041 Reset and clock control (RCC)

101

An interrupt can be generated when the PLL is ready if enabled in the Clock interrupt
register (RCC_CIR).

6.2.4 LSE clock

The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the
advantage providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in Backup domain control
register (RCC_BDCR).

The LSERDY flag in the Backup domain control register (RCC_BDCR) indicates if the LSE
crystal is stable or not. At startup, the LSE crystal output clock signal is not released until
this bit is set by hardware. An interrupt can be generated if enabled in the Clock interrupt
register (RCC_CIR).

External source (LSE bypass)

In this mode, an external clock source must be provided. It must have a frequency of
32.768 kHz. This mode is selected by setting the LSEBYP and LSEON bits in the Backup
domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle)
with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be
left Hi-Z. See Figure 10.

6.2.5 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The
clock frequency is around 40 kHz. For more details, refer to the electrical characteristics
section of the datasheets.

The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR).

The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the low-speed
internal oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the Clock interrupt register
(RCC_CIR).

LSI calibration

Note: LSI calibration is only available on high-density value line devices.

The frequency dispersion of the Low Speed Internal RC (LSI) oscillator can be calibrated to

have accurate RTC time base and/or IWDG timeout (when LSI is used as clock source for
these peripherals) with an acceptable accuracy.

This calibration is performed by measuring the LSI clock frequency with respect to TIM5
input clock (TIM5CLK). According to this measurement done at the precision of the HSE
oscillator, the software can adjust the programmable 20-bit prescaler of the RTC to get an
accurate time base or can compute accurate IWDG timeout.

Use the following procedure to calibrate the LSI:

Reset and clock control (RCC) RM0041

78/709 RM0041 Rev 6

1. Enable TIM5 timer and configure channel4 in input capture mode

2. Set the TIM5CH4_IREMAP bit in the AFIO_MAPR register to connect the LSI clock
internally to TIM5 channel4 input capture for calibration purposes.

3. Measure the frequency of LSI clock using the TIM5 Capture/compare 4 event or
interrupt.

4. Use the measured LSI frequency to update the 20-bit prescaler of the RTC depending
on the desired time base and/or to compute the IWDG timeout.

6.2.6 System clock (SYSCLK) selection

After a system reset, the HSI oscillator is selected as system clock. When a clock source is
used directly or through the PLL as system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source will be ready. Status bits in the Clock
control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently
used as system clock.

6.2.7 Clock security system (CSS)

Clock Security System can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, the HSE oscillator is automatically disabled, a clock
failure event is sent to the break input of the advanced-control timers (TIM1) and an
interrupt is generated to inform the software about the failure (Clock Security System
Interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the
Cortex®-M3 NMI (Non-Maskable Interrupt) exception vector.

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt
by setting the CSSC bit in the Clock interrupt register (RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the HSI oscillator and the disabling of the HSE
oscillator. If the HSE clock (divided or not) is the clock entry of the PLL used as system clock
when the failure occurs, the PLL is disabled too.

6.2.8 RTC clock

The RTCCLK clock source can be either the HSE/128, LSE or LSI clocks. This is selected
by programming the RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR).
This selection cannot be modified without resetting the Backup domain.

RM0041 Rev 6 79/709

RM0041 Reset and clock control (RCC)

101

The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not.
Consequently:

• If LSE is selected as RTC clock:

– The RTC continues to work even if the VDD supply is switched off, provided the
VBAT supply is maintained.

• If LSI is selected as Auto-Wakeup unit (AWU) clock:

– The AWU state is not guaranteed if the VDD supply is powered off. Refer to
Section 6.2.5: LSI clock on page 77 for more details on LSI calibration.

• If the HSE clock divided by 128 is used as the RTC clock:

– The RTC state is not guaranteed if the VDD supply is powered off or if the internal
voltage regulator is powered off (removing power from the 1.8 V domain).

– The DPB bit (Disable backup domain write protection) in the Power controller
register must be set to 1 (refer to Section 4.4.1: Power control register
(PWR_CR)).

When the RTC clock is LSE, the RTC remains clocked and functional under system reset.

6.2.9 Watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.

6.2.10 Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin. The configuration registers of the corresponding GPIO port must be
programmed in alternate function mode. One of 4 clock signals can be selected as the MCO
clock.

• SYSCLK

• HSI

• HSE

• PLL clock divided by 2

The selection is controlled by the MCO[2:0] bits of the Clock configuration register
(RCC_CFGR).

Reset and clock control (RCC) RM0041

80/709 RM0041 Rev 6

6.3 RCC registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

6.3.1 Clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

PLL
RDY

PLLON
Reserved

CSS
ON

HSE
BYP

HSE
RDY

HSE
ON

r rw rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSICAL[7:0] HSITRIM[4:0]
Res.

HSI
RDY

HSION

r r r r r r r r rw rw rw rw rw r rw

Bits 31:26 Reserved, always read as 0.

Bit 25 PLLRDY: PLL clock ready flag

Set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable

Set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the
PLL clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:20 Reserved, always read as 0.

Bit 19 CSSON: Clock security system enable

Set and cleared by software to enable the clock security system. When CSSON is set, the
clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by
hardware if an HSE clock failure is detected.
0: Clock detector OFF
1: Clock detector ON (Clock detector ON if the HSE oscillator is ready , OFF if not).

Bit 18 HSEBYP: External high-speed clock bypass

Set and cleared by software to bypass the oscillator with an external clock. The external
clock must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit
can be written only if the HSE oscillator is disabled.
0: HSE oscillator not bypassed
1: HSE oscillator oscillator bypassed with external clock

Bit 17 HSERDY: External high-speed clock ready flag

Set by hardware to indicate that the HSE oscillator is stable. This bit needs 6 cycles of the
HSE oscillator clock to go to zero after HSEON is reset.
0: HSE oscillator not ready
1: HSE oscillator ready

RM0041 Rev 6 81/709

RM0041 Reset and clock control (RCC)

101

Bit 16 HSEON: External high-speed clock enable

Set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering in Stop or Standby mode. This
bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration

These bits are initialized automatically at startup.

Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the internal HSI RC.
The default value is 16, which, when added to the HSICAL value, should trim the HSI to 8
MHz ± 1%. The trimming step (Fhsitrim) is around 40 kHz between two consecutive HSICAL
steps.

Bit 2 Reserved, always read as 0.

Bit 1 HSIRDY: Internal high-speed clock ready flag

Set by hardware to indicate that internal 8 MHz RC oscillator is stable. After the HSION bit is
cleared, HSIRDY goes low after 6 internal 8 MHz RC oscillator clock cycles.
0: internal 8 MHz RC oscillator not ready
1: internal 8 MHz RC oscillator ready

Bit 0 HSION: Internal high-speed clock enable

Set and cleared by software.
Set by hardware to force the internal 8 MHz RC oscillator ON when leaving Stop or Standby
mode or in case of failure of the HSE oscillator used directly or indirectly as system clock.
This bit cannot be reset if the internal 8 MHz RC is used directly or indirectly as system clock
or is selected to become the system clock.
0: internal 8 MHz RC oscillator OFF
1: internal 8 MHz RC oscillator ON

Reset and clock control (RCC) RM0041

82/709 RM0041 Rev 6

6.3.2 Clock configuration register (RCC_CFGR)

Address offset: 0x04

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MCO[2:0]

Reserved
PLLMUL[3:0]

PLL
XTPRE

PLL
SRC

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADC PRE[1:0] PPRE2[2:0] PPRE1[2:0] HPRE[3:0] SWS[1:0] SW[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw r r rw rw

Bits 31:27 Reserved, always read as 0.

Bits 26:24 MCO: Microcontroller clock output

Set and cleared by software.
0xx: No clock
100: System clock (SYSCLK) selected
101: HSI clock selected
110: HSE clock selected
111: PLL clock divided by 2 selected

Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.

Bits 23:22 Reserved.

Bits 21:18 PLLMUL: PLL multiplication factor

These bits are written by software to define the PLL multiplication factor. These bits can be
written only when PLL is disabled.

Caution: The PLL output frequency must be in the 16-24 MHz range.
0000: PLL input clock x 2
0001: PLL input clock x 3
0010: PLL input clock x 4
0011: PLL input clock x 5
0100: PLL input clock x 6
0101: PLL input clock x 7
0110: PLL input clock x 8
0111: PLL input clock x 9
1000: PLL input clock x 10
1001: PLL input clock x 11
1010: PLL input clock x 12
1011: PLL input clock x 13
1100: PLL input clock x 14
1101: PLL input clock x 15
1110: PLL input clock x 16
1111: PLL input clock x 16

RM0041 Rev 6 83/709

RM0041 Reset and clock control (RCC)

101

Bit 17 PLLXTPRE: LSB of division factor PREDIV1

Set and cleared by software to select the least significant bit of the PREDIV1 division factor.
It is the same bit as bit 0 in the RCC_CFGR2 register, so modifying bit 0 in the
RCC_CFGR2 register changes this bit accordingly.
If bits[3:1] in the RCC_CFGR2 register are not set, the PLLXTPRE bit controls if PREDIV1
divides its input clock by 2 (PLLXTPRE=1) or not (PLLXTPRE=0).
This bit can be written only when the PLL is disabled.

Bit 16 PLLSRC: PLL entry clock source

Set and cleared by software to select PLL clock source. This bit can be written only when
PLL is disabled.
0: HSI oscillator clock / 2 selected as PLL input clock
1: Clock from PREDIV1 selected as the PLL input clock

Bits 15:14 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to ADC1.
00: PLCK2 divided by 2
01: PLCK2 divided by 4
10: PLCK2 divided by 6
11: PLCK2 divided by 8

Bits 13:11 PPRE2: APB high-speed prescaler (APB2)

Set and cleared by software to control the division factor of the APB high-speed clock
(PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 10:8 PPRE1: APB low-speed prescaler (APB1)

Set and cleared by software to control the division factor of the APB low-speed clock
(PCLK1).
Warning: the software has to set correctly these bits to not exceed 36 MHz on this domain.
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 7:4 HPRE: AHB prescaler

Set and cleared by software to control the division factor of the AHB clock.
0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Reset and clock control (RCC) RM0041

84/709 RM0041 Rev 6

6.3.3 Clock interrupt register (RCC_CIR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bits 3:2 SWS: System clock switch status

Set and cleared by hardware to indicate which clock source is used as system clock.
00: HSI oscillator used as system clock
01: HSE oscillator used as system clock
10: PLL used as system clock
11: not applicable

Bits 1:0 SW: System clock switch

Set and cleared by software to select SYSCLK source.
Set by hardware to force HSI selection when leaving Stop and Standby mode or in case of
failure of the HSE oscillator used directly or indirectly as system clock (if the Clock Security
System is enabled).
00: HSI selected as system clock
01: HSE selected as system clock
10: PLL selected as system clock
11: not allowed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CSSC

Reserved

PLL
RDYC

HSE
RDYC

HSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

PLL
RDYIE

HSE
RDYIE

HSI
RDYIE

LSE
RDYIE

LSI
RDYIE

CSSF
Reserved

PLL
RDYF

HSE
RDYF

HSI
RDYF

LSE
RDYF

LSI
RDYF

rw rw rw rw rw r r r r r r

Bits 31:24 Reserved, always read as 0.

Bit 23 CSSC: Clock security system interrupt clear

This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

Bits 22:21 Reserved, always read as 0.

Bit 20 PLLRDYC: PLL ready interrupt clear

This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: PLLRDYF cleared

Bit 19 HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

RM0041 Rev 6 85/709

RM0041 Reset and clock control (RCC)

101

Bit 18 HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

Bit 17 LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

Bit 16 LSIRDYC: LSI ready interrupt clear

This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Bits 15:13 Reserved, always read as 0.

Bit 12 PLLRDYIE: PLL ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 11 HSERDYIE: HSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSE oscillator
stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

Bit 10 HSIRDYIE: HSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the internal 8 MHz RC
oscillator stabilization.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

Bit 9 LSERDYIE: LSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the external 32 kHz
oscillator stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 8 LSIRDYIE: LSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by internal RC 40 kHz
oscillator stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Bit 7 CSSF: Clock security system interrupt flag

Set by hardware when a failure is detected in the HSE oscillator.
Cleared by software setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bits 6:5 Reserved, always read as 0.

Reset and clock control (RCC) RM0041

86/709 RM0041 Rev 6

6.3.4 APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x0C

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

Bit 4 PLLRDYF: PLL ready interrupt flag

Set by hardware when the PLL locks and PLLRDYDIE is set.
Cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock

Bit3 HSERDYF: HSE ready interrupt flag

Set by hardware when External High Speed clock becomes stable and HSERDYDIE is set.
Cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE oscillator
1: Clock ready interrupt caused by the HSE oscillator

Bit 2 HSIRDYF: HSI ready interrupt flag

Set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is
set.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the internal 8 MHz RC oscillator
1: Clock ready interrupt caused by the internal 8 MHz RC oscillator

Bit 1 LSERDYF: LSE ready interrupt flag

Set by hardware when the External Low Speed clock becomes stable and LSERDYDIE is
set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the external 32 kHz oscillator
1: Clock ready interrupt caused by the external 32 kHz oscillator

Bit 0 LSIRDYF: LSI ready interrupt flag

Set by hardware when the internal low speed clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the internal RC 40 kHz oscillator
1: Clock ready interrupt caused by the internal RC 40 kHz oscillator

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

TIM17
RST

TIM16
RST

TIM15
RST

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
RST Res.

SPI1
RST

TIM1
RST Res.

ADC1
RST

IOPG
RST

IOPF
RST

IOPE
RST

IOPD
RST

IOPC
RST

IOPB
RST

IOPA
RST

Res.
AFIO
RST

rw rw rw rw rw rw rw rw rw rw rw Res. rw

Bits 31:19 Reserved, always read as 0.

RM0041 Rev 6 87/709

RM0041 Reset and clock control (RCC)

101

Bit 18 TIM17RST: TIM17 reset

Set and cleared by software.
0: No effect
1: Reset TIM17

Bit 17 TIM16RST: TIM16 reset

Set and cleared by software.
0: No effect
1: Resets TIM16

Bit 16 TIM15RST: TIM15 reset

Set and cleared by software.
0: No effect
1: Resets TIM15

Bit 15 Reserved.

Bit 14 USART1RST: USART1 reset

Set and cleared by software.
0: No effect
1: Reset USART1

Bit 13 Reserved.

Bit 12 SPI1RST: SPI 1 reset

Set and cleared by software.
0: No effect
1: Reset SPI 1

Bit 11 TIM1RST: TIM1 timer reset

Set and cleared by software.
0: No effect
1: Reset TIM1 timer

Bit 10 Reserved.

Bit 9 ADC1RST: ADC 1 interface reset

Set and cleared by software.
0: No effect
1: Reset ADC 1 interface

Bit 8 IOPGRST: IO port G reset

Set and cleared by software.
0: No effect
1: Reset IO port G

Bit 7 IOPFRST: IO port F reset

Set and cleared by software.
0: No effect
1: Reset I/O port F

Bit 6 IOPERST: IO port E reset

Set and cleared by software.
0: No effect
1: Reset IO port E

Reset and clock control (RCC) RM0041

88/709 RM0041 Rev 6

6.3.5 APB1 peripheral reset register (RCC_APB1RSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 5 IOPDRST: IO port D reset

Set and cleared by software.
0: No effect
1: Reset I/O port D

Bit 4 IOPCRST: IO port C reset

Set and cleared by software.
0: No effect
1: Reset I/O port C

Bit 3 IOPBRST: IO port B reset

Set and cleared by software.
0: No effect
1: Reset I/O port B

Bit 2 IOPARST: I/O port A reset

Set and cleared by software.
0: No effect
1: Reset I/O port A

Bit 1 Reserved, always read as 0.

Bit 0 AFIORST: Alternate function I/O reset

Set and cleared by software.
0: No effect
1: Reset Alternate Function

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

CECR
ST

DAC
RST

PWR
RST

BKP
RST Reserved

I2C2
RST

I2C1
RST

UART5
RST

UART4
RST

USART3
RST

USART2
RST Res.

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
RST

SPI2
RST Reserved

WWDG
RST Reserved

TIM14
RST

TIM13
RST

TIM12
RST

TIM7
RST

TIM6
RST

TIM5
RST

TIM4
RST

TIM3
RST

TIM2
RST

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, always read as 0.

Bit 30 CECRST: CEC reset

Set and cleared by software.
0: No effect
1: Reset CEC

Bit 29 DACRST: DAC interface reset

Set and cleared by software.
0: No effect
1: Reset DAC interface

RM0041 Rev 6 89/709

RM0041 Reset and clock control (RCC)

101

Bit 28 PWRRST: Power interface reset

Set and cleared by software.
0: No effect
1: Reset power interface

Bit 27 BKPRST: Backup interface reset

Set and cleared by software.
0: No effect
1: Reset backup interface

Bits 26:23 Reserved, always read as 0.

Bit 22 I2C2RST: I2C 2 reset

Set and cleared by software.
0: No effect
1: Reset I2C 2

Bit 21 I2C1RST: I2C 1 reset

Set and cleared by software.
0: No effect
1: Reset I2C 1

Bit 20 UART5RST: UART 5 reset

Set and cleared by software.
0: No effect
1: Reset UART 5

Bit 19 UART4RST: UART 4 reset

Set and cleared by software.
0: No effect
1: Reset UART 4

Bit 18 USART3RST: USART 3 reset

Set and cleared by software.
0: No effect
1: Reset USART 3

Bit 17 USART2RST: USART 2 reset

Set and cleared by software.
0: No effect
1: Reset USART 2

Bit 16 Reserved, always read as 0.

Bit 15 SPI3RST: SPI 3 reset

Set and cleared by software.
0: No effect
1: Reset SPI 3

Bit 14 SPI2RST: SPI 2 reset

Set and cleared by software.
0: No effect
1: Reset SPI 2

Bits 13:12 Reserved, always read as 0.

Reset and clock control (RCC) RM0041

90/709 RM0041 Rev 6

6.3.6 AHB peripheral clock enable register (RCC_AHBENR)

Address offset: 0x14

Reset value: 0x0000 0014

Bit 11 WWDGRST: Window watchdog reset

Set and cleared by software.
0: No effect
1: Reset window watchdog

Bits 10:9 Reserved, always read as 0.

Bit 8 TIM14RST: Timer 14 reset

Set and cleared by software.
0: No effect
1: Reset timer 14

Bit 7 TIM13RST: Timer 13 reset

Set and cleared by software.
0: No effect
1: Reset timer 13

Bit 6 TIM12RST: Timer 12 reset

Set and cleared by software.
0: No effect
1: Reset timer 12

Bit 5 TIM7RST: Timer 7 reset

Set and cleared by software.
0: No effect
1: Reset timer 7

Bit 4 TIM6RST: Timer 6 reset

Set and cleared by software.
0: No effect
1: Reset timer 6

Bit 3 TIM5RST: Timer 5 reset

Set and cleared by software.
0: No effect
1: Reset timer 5

Bit 2 TIM4RST: Timer 4 reset

Set and cleared by software.
0: No effect
1: Reset timer 4

Bit 1 TIM3RST: Timer 3 reset

Set and cleared by software.
0: No effect
1: Reset timer 3

Bit 0 TIM2RST: Timer 2 reset

Set and cleared by software.
0: No effect
1: Reset timer 2

RM0041 Rev 6 91/709

RM0041 Reset and clock control (RCC)

101

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

FSMC
EN Res.

CRCE
N Res.

FLITF
EN Res.

SRAM
EN

DMA2
EN

DMA1
EN

rw rw rw rw rw rw

Bits 31:9 Reserved, always read as 0.

Bit 8 FSMCEN: FSMC clock enable

Set and cleared by software.
0: FSMC clock disabled
1: FSMC clock enabled

Bit 7 Reserved, always read as 0.

Bit 6 CRCEN: CRC clock enable

Set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled

Bit 5 Reserved, always read as 0.

Bit 4 FLITFEN: FLITF clock enable

Set and cleared by software to disable/enable FLITF clock during sleep mode.
0: FLITF clock disabled during Sleep mode
1: FLITF clock enabled during Sleep mode

Bit 3 Reserved, always read as 0.

Bit 2 SRAMEN: SRAM interface clock enable

Set and cleared by software to disable/enable SRAM interface clock during Sleep mode.
0: SRAM interface clock disabled during Sleep mode.
1: SRAM interface clock enabled during Sleep mode

Bit 1 DMA2EN: DMA2 clock enable

Set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled

Bit 0 DMA1EN: DMA1 clock enable

Set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Reset and clock control (RCC) RM0041

92/709 RM0041 Rev 6

6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2
domain is on going. In this case, wait states are inserted until the access to APB2 peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

TIM17
EN

TIM16
EN

TIM15
EN

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USAR
T1EN Res.

SPI1
EN

TIM1
EN Res.

ADC1
EN

IOPG
EN

IOPF
EN

IOPE
EN

IOPD
EN

IOPC
EN

IOPB
EN

IOPA
EN Res.

AFIO
EN

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, always read as 0.

Bit 18 TIM17EN: TIM17 Timer clock enable

Set and cleared by software.
0: TIM17 timer clock disabled
1: TIM17 timer clock enabled

Bit 17 TIM16EN: TIM16 timer clock enable

Set and cleared by software.
0: TIM16 timer clock disabled
1: TIM16 timer clock enabled

Bit 16 TIM15EN: TIM15 timer clock enable

Set and cleared by software.
0: TIM15 timer clock disabled
1: TIM15 timer clock enabled

Bit 15 Reserved.

Bit 14 USART1EN: USART1 clock enable

Set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bit 13 Reserved.

Bit 12 SPI1EN: SPI 1 clock enable

Set and cleared by software.
0: SPI 1 clock disabled
1: SPI 1 clock enabled

RM0041 Rev 6 93/709

RM0041 Reset and clock control (RCC)

101

Bit 11 TIM1EN: TIM1 Timer clock enable

Set and cleared by software.
0: TIM1 timer clock disabled
1: TIM1 timer clock enabled

Bit 10 Reserved.

Bit 9 ADC1EN: ADC 1 interface clock enable

Set and cleared by software.
0: ADC 1 interface disabled
1: ADC 1 interface clock enabled

Bit 8 IOPGEN: I/O port G clock enable

Set and cleared by software.
0: I/O port G clock disabled
1: I/O port G clock enabled

Bit 7 IOPFEN: I/O port F clock enable

Set and cleared by software.
0: I/O port F clock disabled
1: I/O port F clock enabled

Bit 6 IOPEEN: I/O port E clock enable

Set and cleared by software.
0: I/O port E clock disabled
1: I/O port E clock enabled

Bit 5 IOPDEN: I/O port D clock enable

Set and cleared by software.
0: I/O port D clock disabled
1: I/O port D clock enabled

Bit 4 IOPCEN: I/O port C clock enable

Set and cleared by software.
0: I/O port C clock disabled
1:I/O port C clock enabled

Bit 3 IOPBEN: I/O port B clock enable

Set and cleared by software.
0: I/O port B clock disabled
1:I/O port B clock enabled

Bit 2 IOPAEN: I/O port A clock enable

Set and cleared by software.
0: I/O port A clock disabled
1:I/O port A clock enabled

Bit 1 Reserved, always read as 0.

Bit 0 AFIOEN: Alternate function I/O clock enable

Set and cleared by software.
0: Alternate Function I/O clock disabled
1:Alternate Function I/O clock enabled

Reset and clock control (RCC) RM0041

94/709 RM0041 Rev 6

6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR)

Address: 0x1C

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB1 domain
is on going. In this case, wait states are inserted until this access to APB1 peripheral is
finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

CECE
N

DAC
EN

PWR
EN

BKP
EN Reserved

I2C2
EN

I2C1
EN

UART5E
N

UART4E
N

USART
3EN

USART
2EN

Res.

rw rw rw rw rw rw rw rw rw rw Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
EN

SPI2
EN Reserved

WWD
GEN Reserved

TIM14
EN

TIM13
EN

TIM12
EN

TIM7
EN

TIM6
EN

TIM5
EN

TIM4
EN

TIM3
EN

TIM2
EN

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 Reserved, always read as 0.

Bit 30 CECEN: CEC clock enable

Set and cleared by software.
0: CEC clock disabled
1: CEC clock enabled

Bit 29 DACEN: DAC interface clock enable

Set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable

Set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable

Bit 27 BKPEN: Backup interface clock enable

Set and cleared by software.
0: Backup interface clock disabled
1: Backup interface clock enabled

Bits 26:23 Reserved, always read as 0.

Bit 22 I2C2EN: I2C 2 clock enable

Set and cleared by software.
0: I2C 2 clock disabled
1: I2C 2 clock enabled

RM0041 Rev 6 95/709

RM0041 Reset and clock control (RCC)

101

Bit 21 I2C1EN: I2C 1 clock enable

Set and cleared by software.
0: I2C 1 clock disabled
1: I2C 1 clock enabled

Bit 20 UART5EN: UART 5 clock enable

Set and cleared by software.
0: UART 5 clock disabled
1: UART 5 clock enabled

Bit 19 UART4EN: UART 4 clock enable

Set and cleared by software.
0: UART 4 clock disabled
1: UART 4 clock enabled

Bit 18 USART3EN: USART 3 clock enable

Set and cleared by software.
0: USART 3 clock disabled
1: USART 3 clock enabled

Bit 17 USART2EN: USART 2 clock enable

Set and cleared by software.
0: USART 2 clock disabled
1: USART 2 clock enabled

Bits 16 Reserved, always read as 0.

Bit 15 SPI3EN: SPI 3 clock enable

Set and cleared by software.
0: SPI 3 clock disabled
1: SPI 3 clock enabled

Bit 14 SPI2EN: SPI 2 clock enable

Set and cleared by software.
0: SPI 2 clock disabled
1: SPI 2 clock enabled

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGEN: Window watchdog clock enable

Set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bits 10:9 Reserved, always read as 0.

Bit 8 TIM14EN: Timer 14 clock enable

Set and cleared by software.
0: Timer 14 clock disabled
1: Timer 14 clock enabled

Bit 7 TIM13EN: Timer 13 clock enable

Set and cleared by software.
0: Timer 13 clock disabled
1: Timer 13 clock enabled

Reset and clock control (RCC) RM0041

96/709 RM0041 Rev 6

Bit 6 TIM12EN: Timer 12 clock enable

Set and cleared by software.
0: Timer 12 clock disabled
1: Timer 12 clock enabled

Bit 5 TIM7EN: Timer 7clock enable

Set and cleared by software.
0: Timer 7 clock disabled
1: Timer 7 clock enabled

Bit 4 TIM6EN: Timer 6 clock enable

Set and cleared by software.
0: Timer 6 clock disabled
1: Timer 6 clock enabled

Bit 3 TIM5EN: Timer 5 clock enable

Set and cleared by software.
0: Timer 5 clock disabled
1: Timer 5 clock enabled

Bit 2 TIM4EN: Timer 4 clock enable

Set and cleared by software.
0: Timer 4 clock disabled
1: Timer 4 clock enabled

Bit 1 TIM3EN: Timer 3 clock enable

Set and cleared by software.
0: Timer 3 clock disabled
1: Timer 3 clock enabled

Bit 0 TIM2EN: Timer 2 clock enable

Set and cleared by software.
0: Timer 2 clock disabled
1: Timer 2 clock enabled

RM0041 Rev 6 97/709

RM0041 Reset and clock control (RCC)

101

6.3.9 Backup domain control register (RCC_BDCR)

Address offset: 0x20
Reset value: 0x0000 0000, reset by Backup domain Reset.
Access: 0 ≤ wait state ≤ 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.

Note: LSEON, LSEBYP, RTCSEL and RTCEN bits of the Backup domain control register
(RCC_BDCR) are in the Backup domain. As a result, after Reset, these bits are write-
protected and the DBP bit in the Power control register (PWR_CR) has to be set before
these can be modified. Refer to Section 5: Backup registers (BKP) for further information.
These bits are only reset after a Backup domain Reset (see Section 6.1.3: Backup domain
reset). Any internal or external Reset will not have any effect on these bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
BDRST

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC
EN Reserved

RTCSEL[1:0]
Reserved

LSE
BYP

LSE
RDY

LSEON

rw rw rw rw r rw

Bits 31:17 Reserved, always read as 0.

Bit 16 BDRST: Backup domain software reset

Set and cleared by software.
0: Reset not activated
1: Resets the entire Backup domain

Bit 15 RTCEN: RTC clock enable

Set and cleared by software.
0: RTC clock disabled
1: RTC clock enabled

Bits 14:10 Reserved, always read as 0.

Bits 9:8 RTCSEL[1:0]: RTC clock source selection

Set by software to select the clock source for the RTC. Once the RTC clock source has been
selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit
can be used to reset them.
00: No clock
01: LSE oscillator clock used as RTC clock
10: LSI oscillator clock used as RTC clock
11: HSE oscillator clock divided by 128 used as RTC clock

Bits 7:3 Reserved, always read as 0.

Bit 2 LSEBYP: External low-speed oscillator bypass

Set and cleared by software to bypass oscillator in debug mode. This bit can be written only
when the external 32 kHz oscillator is disabled.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Reset and clock control (RCC) RM0041

98/709 RM0041 Rev 6

6.3.10 Control/status register (RCC_CSR)

Address: 0x24

Reset value: 0x0C00 0000, reset by system Reset, except reset flags by power Reset only.

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Bit 1 LSERDY: External low-speed oscillator ready

Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After
the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock
cycles.
0: External 32 kHz oscillator not ready
1: External 32 kHz oscillator ready

Bit 0 LSEON: External low-speed oscillator enable

Set and cleared by software.
0: External 32 kHz oscillator OFF
1: External 32 kHz oscillator ON

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF Res.

RMVF
Reserved

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

LSI
RDY

LSION

r rw

Bit 31 LPWRRSTF: Low-power reset flag

Set by hardware when a Low-power management reset occurs.
Cleared by writing to the RMVF bit.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Low-power management
reset.

Bit 30 WWDGRSTF: Window watchdog reset flag

Set by hardware when a window watchdog reset occurs.
Cleared by writing to the RMVF bit.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

Set by hardware when an independent watchdog reset from VDD domain occurs.
Cleared by writing to the RMVF bit.
0: No watchdog reset occurred
1: Watchdog reset occurred

RM0041 Rev 6 99/709

RM0041 Reset and clock control (RCC)

101

Bit 28 SFTRSTF: Software reset flag

Set by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag

Set by hardware when a POR/PDR reset occurs.
Cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Bit 26 PINRSTF: PIN reset flag

Set by hardware when a reset from the NRST pin occurs.
Cleared by writing to the RMVF bit.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

Bit 25 Reserved, always read as 0.

Bit 24 RMVF: Remove reset flag

Set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bits 23:2 Reserved, always read as 0.

Bit 1 LSIRDY: Internal low-speed oscillator ready

Set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable.
After the LSION bit is cleared, LSIRDY goes low after 3 internal RC 40 kHz oscillator clock
cycles.
0: Internal RC 40 kHz oscillator not ready
1: Internal RC 40 kHz oscillator ready

Bit 0 LSION: Internal low-speed oscillator enable

Set and cleared by software.
0: Internal RC 40 kHz oscillator OFF
1: Internal RC 40 kHz oscillator ON

Reset and clock control (RCC) RM0041

100/709 RM0041 Rev 6

6.3.11 Clock configuration register2 (RCC_CFGR2)

Address offset: 0x2C

Access: no wait state, word, half-word and byte access

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PREDIV1[3:0]

rw rw rw rw

Bits 31:4 Reserved.

Bits 3:0 PREDIV1[3:0]: PREDIV1 division factor

Set and cleared by software to select the PREDIV1 division factor. These bits can be written
only when the PLL is disabled.

Note: Bit 0 is the same as bit 17 in the RCC_CFGR register, so modifying bit 17 in the
RCC_CFGR register changes bit 0 accordingly.

0000: PREDIV1 input clock not divided
0001: PREDIV1 input clock divided by 2
0010: PREDIV1 input clock divided by 3
0011: PREDIV1 input clock divided by 4
0100: PREDIV1 input clock divided by 5
0101: PREDIV1 input clock divided by 6
0110: PREDIV1 input clock divided by 7
0111: PREDIV1 input clock divided by 8
1000: PREDIV1 input clock divided by 9
1001: PREDIV1 input clock divided by 10
1010: PREDIV1 input clock divided by 11
1011: PREDIV1 input clock divided by 12
1100: PREDIV1 input clock divided by 13
1101: PREDIV1 input clock divided by 14
1110: PREDIV1 input clock divided by 15
1111: PREDIV1 input clock divided by 16

RM0041 Rev 6 101/709

RM0041 Reset and clock control (RCC)

101

6.3.12 RCC register map

The following table gives the RCC register map and the reset values.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 15. RCC register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
RCC_CR

Reserved

P
L

L
R

D
Y

P
LL

 O
N

Reserved

C
S

S
O

N

H
S

E
B

Y
P

H
S

E
R

D

H
S

E
O

N

HSICAL[7:0] HSITRIM[4:0]

R
e

se
rv

ed

H
S

IR
D

Y

H
S

IO
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0x004
RCC_CFGR

Reserved
MCO [2:0]

R
e

se
rv

ed

PLLMUL[3:0]

P
L

LX
T

P
R

E

P
L

L
S

R
C ADC

PRE
[1:0]

PPRE2
[2:0]

PPRE1
[2:0]

HPRE[3:0]
SWS
[1:0]

SW
[1:0]

Reset value 0

0x008
RCC_CIR

Reserved

C
S

S
C

R
e

se
rv

e
d

P
LL

R
D

Y
C

H
S

E
R

D
Y

C

H
S

IR
D

Y
C

L
S

E
R

D
Y

C

L
S

IR
D

Y
C

R
e

se
rv

e
d

P
LL

R
D

Y
IE

H
S

E
R

D
Y

IE

H
S

IR
D

Y
IE

L
S

E
R

D
Y

IE

LS
IR

D
Y

IE

C
S

S
F

R
e

se
rv

e
d

P
L

L
R

D
Y

F

H
S

E
R

D
Y

F

H
S

IR
D

Y
F

L
S

E
R

D
Y

F

LS
IR

D
Y

F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
RCC_APB2RSTR

Reserved

T
IM

1
7

R
S

T

T
IM

1
6

R
S

T

T
IM

1
5

R
S

T

R
e

se
rv

e
d

U
S

A
R

T
1R

S
T

R
e

se
rv

e
d

S
P

I1
R

S
T

T
IM

1R
S

T

R
e

se
rv

e
d

A
D

C
1

IO
P

G
R

S
T

IO
P

F
R

S
T

IO
P

E
R

S
T

IO
P

D
R

S
T

IO
P

C
R

S
T

IO
P

B
R

S
T

IO
P

A
R

S
T

R
e

se
rv

e
d

A
F

IO
R

S
T

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
RCC_APB1RSTR

R
es

er
ve

d

C
E

C
R

S
T

D
A

C
R

S
T

P
W

R
R

S
T

B
K

P
R

S
T

Reserved

I2
C

2R
S

T

I2
C

1R
S

T

U
A

R
T

5
R

S
T

U
A

R
T

4
R

S
T

U
S

A
R

T
3

R
S

T

U
S

A
R

T
2

R
S

T

R
es

er
ve

d

S
P

I3
R

S
T

S
P

I2
R

S
T

R
es

er
ve

d

W
W

D
G

R
S

T

R
es

er
ve

d

T
IM

1
4R

S
T

T
IM

1
3R

S
T

T
IM

1
2R

S
T

T
IM

7
R

S
T

T
IM

6
R

S
T

T
IM

5
R

S
T

T
IM

4
R

S
T

T
IM

3
R

S
T

T
IM

2
R

S
T

Reset value 0

0x014
RCC_AHBENR

Reserved

F
S

M
C

E
N

R
e

se
rv

e
d

C
R

C
E

N

R
e

se
rv

e
d

F
L

IT
F

E
N

R
e

se
rv

e
d

S
R

A
M

E
N

D
M

A
2E

N

D
M

A
1E

N

Reset value 0 0 1 1 0 0

0x018
RCC_APB2ENR

Reserved

T
IM

1
7

E
N

T
IM

1
6

E
N

T
IM

1
5

E
N

R
e

se
rv

e
d

U
S

A
R

T
1

E
N

R
e

se
rv

e
d

S
P

I1
E

N

T
IM

1
E

N

R
e

se
rv

e
d

A
D

C
1

E
N

IO
P

G
E

N

IO
P

F
E

N

IO
P

E
E

N

IO
P

D
E

N

IO
P

C
E

N

IO
P

B
E

N

IO
P

A
E

N

R
e

se
rv

e
d

A
F

IO
E

N
Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x01C
RCC_APB1ENR

R
es

er
ve

d

C
E

C
E

N

D
A

C
E

N

P
W

R
E

N

B
K

P
E

N

R
es

er
ve

d

I2
C

2
E

N

I2
C

1
E

N

U
A

R
T

5
E

N

U
A

R
T

4
E

N

U
S

A
R

T
3E

N

U
S

A
R

T
2E

N

R
es

er
ve

d

S
P

I3
E

N

S
P

I2
E

N

R
es

er
ve

d

W
W

D
G

E
N

R
es

er
ve

d

T
IM

1
4

E
N

T
IM

1
3

E
N

T
IM

1
2

E
N

T
IM

7E
N

T
IM

6E
N

T
IM

5E
N

T
IM

4E
N

T
IM

3E
N

T
IM

2E
N

Reset value 0

0x020
RCC_BDCR

Reserved

B
D

R
S

T

R
T

C
E

N

Reserved

RTC
SEL
[1:0] Reserved

LS
E

B
Y

P

L
S

E
R

D
Y

L
S

E
O

N

Reset value 0 0 0 0 0 0 0

0x024
RCC_CSR

L
P

W
R

S
T

F

W
W

D
G

R
S

T
F

IW
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
IN

R
S

T
F

R
es

er
ve

d

R
M

V
F

Reserved

L
S

IR
D

Y

L
S

IO
N

Reset value 0 0 0 0 1 1 0 0 0

0x02C
RCC_CFGR2

Reserved
PREDIV1[3:0]

Reset value 0 0 0 0

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

102/709 RM0041 Rev 6

7 General-purpose and alternate-function I/Os

(GPIOs and AFIOs)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

7.1 GPIO functional description

Each of the general-purpose I/O ports has two 32-bit configuration registers (GPIOx_CRL,
GPIOx_CRH), two 32-bit data registers (GPIOx_IDR, GPIOx_ODR), a 32-bit set/reset
register (GPIOx_BSRR), a 16-bit reset register (GPIOx_BRR) and a 32-bit locking register
(GPIOx_LCKR).

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
in several modes:

• Input floating

• Input pull-up

• Input-pull-down

• Analog

• Output open-drain

• Output push-pull

• Alternate function push-pull

• Alternate function open-drain

Each I/O port bit is freely programmable, however the I/O port registers have to be
accessed as 32-bit words (half-word or byte accesses are not allowed). The purpose of the
GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of
the GPIO registers. This way, there is no risk that an IRQ occurs between the read and the
modify access.

Figure 11 shows the basic structure of an I/O Port bit.

RM0041 Rev 6 103/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Figure 11. Basic structure of a standard I/O port bit

Figure 12. Basic structure of a 5-Volt tolerant I/O port bit

1. VDD_FT is a potential specific to 5-Volt tolerant I/Os, and different from VDD.

Alternate Function Output

Alternate Function Input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog Input

on/off

on/off

I/O pin

VDD

VDD

VSS

VSS

TTL Schmitt
 trigger

VSS

VDD

Protection
diode

Protection
diode

on/off

Input driver

Output driver

P-MOS

N-MOS

Read
B

it
se

t/r
es

et
 r

eg
is

te
rs

Write

ai14781

Alternate Function Output

Alternate Function Input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog Input

on/off

on/off

I/O pin

VDD

VDD

VSS

VSS

TTL Schmitt
 trigger

VSS

VDD_FT(1)

Protection
diode

on/off

Input driver

Output driver

P-MOS

N-MOS

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14782

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

104/709 RM0041 Rev 6

7.1.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are
configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b).

The JTAG pins are in input PU/PD after reset:

PA15: JTDI in PU

PA14: JTCK in PD

PA13: JTMS in PU

PB4: NJTRST in PU

When configured as output, the value written to the Output Data register (GPIOx_ODR) is
output on the I/O pin. It is possible to use the output driver in Push-Pull mode or Open-Drain
mode (only the N-MOS is activated when outputting 0).

The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every
APB2 clock cycle.

All GPIO pins have an internal weak pull-up and weak pull-down that can be activated or not
when configured as input.

7.1.2 Atomic bit set or reset

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify only one or several bits in a single atomic APB2 write
access. This is achieved by programming to ‘1’ the Bit Set/Reset register (GPIOx_BSRR, or

Table 16. Port bit configuration table

Configuration mode CNF1 CNF0 MODE1 MODE0
PxODR
register

General purpose
output

Push-pull
0

0
01

10

11

see Table 17

0 or 1

Open-drain 1 0 or 1

Alternate Function
output

Push-pull
1

0 Don’t care

Open-drain 1 Don’t care

Input

Analog
0

0

00

Don’t care

Input floating 1 Don’t care

Input pull-down
1 0

0

Input pull-up 1

Table 17. Output MODE bits

MODE[1:0] Meaning

00 Reserved

01 Maximum output speed 10 MHz

10 Maximum output speed 2 MHz

11 Maximum output speed 50 MHz

RM0041 Rev 6 105/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

for reset only GPIOx_BRR) to select the bits to modify. The unselected bits will not be
modified.

7.1.3 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode. For more information on external interrupts, refer to Section 8.2:
External interrupt/event controller (EXTI) and Section 8.2.3: Wakeup event management.

7.1.4 Alternate functions (AF)

It is necessary to program the Port Bit Configuration register before using a default alternate
function.

• For alternate function inputs, the port must be configured in Input mode (floating, pull-
up or pull-down) and the input pin must be driven externally.

Note: It is also possible to emulate the AFI input pin by software by programming the GPIO
controller. In this case, the port should be configured in Alternate Function Output mode.
And obviously, the corresponding port should not be driven externally as it will be driven by
the software using the GPIO controller.

• For alternate function outputs, the port must be configured in Alternate Function Output
mode (Push-Pull or Open-Drain).

• For bidirectional Alternate Functions, the port bit must be configured in Alternate
Function Output mode (Push-Pull or Open-Drain). In this case the input driver is
configured in input floating mode

If a port bit is configured as Alternate Function Output, this disconnects the output register
and connects the pin to the output signal of an on-chip peripheral.

If software configures a GPIO pin as Alternate Function Output, but peripheral is not
activated, its output is not specified.

7.1.5 Software remapping of I/O alternate functions

To optimize the number of peripheral I/O functions for different device packages, it is
possible to remap some alternate functions to some other pins. This is achieved by
software, by programming the corresponding registers (refer to AFIO registers. In that case,
the alternate functions are no longer mapped to their original assignations.

7.1.6 GPIO locking mechanism

The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence
has been applied on a port bit, it is no longer possible to modify the value of the port bit until
the next reset.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

106/709 RM0041 Rev 6

7.1.7 Input configuration

When the I/O Port is programmed as Input:

• The Output Buffer is disabled

• The Schmitt Trigger Input is activated

• The weak pull-up and pull-down resistors are activated or not depending on input
configuration (pull-up, pull-down or floating):

• The data present on the I/O pin is sampled into the Input Data register every APB2
clock cycle

• A read access to the Input Data register obtains the I/O State.

Figure 13 shows the Input Configuration of the I/O Port bit.

Figure 13. Input floating/pull up/pull down configurations

1. VDD_FT is a potential specific to 5-Volt tolerant I/Os, and different from VDD.

7.1.8 Output configuration

When the I/O Port is programmed as Output:

• The Output Buffer is enabled:

– Open Drain mode: A “0” in the Output register activates the N-MOS while a “1” in
the Output register leaves the port in Hi-Z (the P-MOS is never activated)

– Push-Pull mode: A “0” in the Output register activates the N-MOS while a “1” in the
Output register activates the P-MOS

• The Schmitt Trigger Input is activated.

• The weak pull-up and pull-down resistors are disabled.

• The data present on the I/O pin is sampled into the Input Data register every APB2
clock cycle

• A read access to the Input Data register gets the I/O state in open drain mode

• A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 14 shows the Output configuration of the I/O Port bit.

I/O pin

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

protection
diode

protection
diode

on

input driver

output driver

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

on/off

on/off

VDD

VSS

ai14783

RM0041 Rev 6 107/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Figure 14. Output configuration

1. VDD_FT is a potential specific to 5-Volt tolerant I/Os, and different from VDD.

7.1.9 Alternate function configuration

When the I/O Port is programmed as Alternate Function:

• The Output Buffer is turned on in Open Drain or Push-Pull configuration

• The Output Buffer is driven by the signal coming from the peripheral (alternate function
out)

• The Schmitt Trigger Input is activated

• The weak pull-up and pull-down resistors are disabled.

• The data present on the I/O pin is sampled into the Input Data register every APB2
clock cycle

• A read access to the Input Data register gets the I/O state in open drain mode

• A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 15 shows the Alternate Function Configuration of the I/O Port bit. Also, refer to
Section 7.4: AFIO registers for further information.

A set of Alternate Function I/O registers allows the user to remap some alternate functions
to different pins. Refer to Section 7.3: Alternate function I/O and debug configuration (AFIO).

Push-pull or
Open-drain

Output
control

I/O pin

VDD

VSS

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

on

Input driver

Output driver

P-MOS

N-MOS

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14784

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

108/709 RM0041 Rev 6

Figure 15. Alternate function configuration

1. VDD_FT is a potential specific to 5-Volt tolerant I/Os, and different from VDD.

7.1.10 Analog configuration

When the I/O Port is programmed as Analog configuration:

• The Output Buffer is disabled.

• The Schmitt Trigger Input is de-activated providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).

• The weak pull-up and pull-down resistors are disabled.

• Read access to the Input Data register gets the value “0”.

Figure 16 shows the high impedance-analog configuration of the I/O Port bit.

Alternate Function Output

Alternate Function Input

push-pull or
open-drain

From on-chip
peripheral

To on-chip
peripheral

Output
control

I/O pin

VDD

VSS

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

on

Input driver

Output driver

P-MOS

N-MOS

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14785

RM0041 Rev 6 109/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Figure 16. High impedance-analog configuration

7.1.11 GPIO configurations for device peripherals

Table 18 to Table 27 give the GPIO configurations of the device peripherals.

From on-chip
peripheral

To on-chip
peripheral

Analog Input

I/O pin

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

off

Input driver

0

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14786

Table 18. Advanced timer TIM1

TIM1 pinout Configuration GPIO configuration

TIM1_CHx
Input capture channel x Input floating

Output compare channel x Alternate function push-pull

TIM1_CHxN Complementary output channel x Alternate function push-pull

TIM1_BKIN Break input Input floating

TIM1_ETR External trigger timer input Input floating

Table 19. General-purpose timers TIM2/3/4/5

TIM2/3/4/5 pinout Configuration GPIO configuration

TIM2/3/4/5_CHx
Input capture channel x Input floating

Output compare channel x Alternate function push-pull

TIM2/3/4/5_ETR External trigger timer input Input floating

Table 20. General-purpose timers TIM15/16/17

TIM15/16/17 pinout Configuration GPIO configuration

TIM15/16/17_CHx
Input capture channel x Input floating

Output compare channel x Alternate function push-pull

TIM15/16/17_CHxN Complementary output channel x Alternate function push-pull

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

110/709 RM0041 Rev 6

TIM15/16/17_BKIN Break input Input floating

TIM15/16/17_ETR External trigger timer input Input floating

Table 21. General-purpose timers TIM12/13/14

TIM12/13/14 pinout Configuration GPIO configuration

TIM12/13/14_CHx
Input capture channel x Input floating

Output compare channel x Alternate function push-pull

Table 22. USARTs

USART pinout Configuration GPIO configuration

USARTx_TX(1)

1. The USART_TX pin can also be configured as alternate function open drain.

Full duplex Alternate function push-pull

Half duplex synchronous mode Alternate function push-pull

USARTx_RX
Full duplex Input floating / Input pull-up

Half duplex synchronous mode Not used. Can be used as a general IO

USARTx_CK Synchronous mode Alternate function push-pull

USARTx_RTS Hardware flow control Alternate function push-pull

USARTx_CTS Hardware flow control Input floating/ Input pull-up

Table 23. SPI

SPI pinout Configuration GPIO configuration

SPIx_SCK
Master Alternate function push-pull

Slave Input floating

SPIx_MOSI

Full duplex / master Alternate function push-pull

Full duplex / slave Input floating / Input pull-up

Simplex bidirectional data wire / master Alternate function push-pull

Simplex bidirectional data wire/ slave Not used. Can be used as a GPIO

SPIx_MISO

Full duplex / master Input floating / Input pull-up

Full duplex / slave (point to point) Alternate function push-pull

Full duplex / slave (multi-slave) Alternate function open drain

Simplex bidirectional data wire / master Not used. Can be used as a GPIO

Simplex bidirectional data wire/ slave
(point to point)

Alternate function push-pull

Simplex bidirectional data wire/ slave
(multi-slave)

Alternate function open drain

Table 20. General-purpose timers TIM15/16/17

TIM15/16/17 pinout Configuration GPIO configuration

RM0041 Rev 6 111/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

The GPIO configuration of the ADC inputs should be analog.

SPIx_NSS

Hardware master /slave Input floating/ Input pull-up / Input pull-down

Hardware master/ NSS output enabled Alternate function push-pull

Software Not used. Can be used as a GPIO

Table 24. CEC

CEC pinout Configuration GPIO configuration

CEC CEC line Alternate function open drain

Table 25. I2C

I2C pinout Configuration GPIO configuration

I2Cx_SCL I2C clock Alternate function open drain

I2Cx_SDA I2C Data I/O Alternate function open drain

Figure 17. ADC / DAC

ADC/DAC pin GPIO configuration

ADC/DAC Analog

Table 26. FSMC

FSMC pinout GPIO configuration

FSMC_A[25:0]
FSMC_D[15:0]

Alternate function push-pull

FSMC_CK Alternate function push-pull

FSMC_NOE
FSMC_NWE

Alternate function push-pull

FSMC_NE[4:1] Alternate function push-pull

FSMC_NWAIT Input floating/ Input pull-up

FSMC_NL
FSMC_NBL[1:0]

Alternate function push-pull

Table 23. SPI (continued)

SPI pinout Configuration GPIO configuration

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

112/709 RM0041 Rev 6

Table 27. Other IOs

Pins Alternate function GPIO configuration

TAMPER-RTC pin
RTC output Forced by hardware when configuring the

BKP_CR and BKP_RTCCR registersTamper event input

MCO Clock output Alternate function push-pull

EXTI input lines External input interrupts Input floating / input pull-up / input pull-down

RM0041 Rev 6 113/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.2 GPIO registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CNF7[1:0] MODE7[1:0] CNF6[1:0] MODE6[1:0] CNF5[1:0] MODE5[1:0] CNF4[1:0] MODE4[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNF3[1:0] MODE3[1:0] CNF2[1:0] MODE2[1:0] CNF1[1:0] MODE1[1:0] CNF0[1:0] MODE0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30, 27:26,
23:22, 19:18, 15:14,

11:10, 7:6, 3:2

CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 16: Port bit configuration table.
In input mode (MODE[1:0]=00):
00: Analog mode
01: Floating input (reset state)
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE[1:0] > 00):
00: General purpose output push-pull
01: General purpose output Open-drain
10: Alternate function output Push-pull
11: Alternate function output Open-drain

Bits 29:28, 25:24,
21:20, 17:16, 13:12,

9:8, 5:4, 1:0

MODEy[1:0]: Port x mode bits (y= 0 .. 7)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 16: Port bit configuration table.
00: Input mode (reset state)
01: Output mode, max speed 10 MHz.
10: Output mode, max speed 2 MHz.
11: Output mode, max speed 50 MHz.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

114/709 RM0041 Rev 6

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

7.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CNF15[1:0] MODE15[1:0] CNF14[1:0] MODE14[1:0] CNF13[1:0] MODE13[1:0] CNF12[1:0] MODE12[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNF11[1:0] MODE11[1:0] CNF10[1:0] MODE10[1:0] CNF9[1:0] MODE9[1:0] CNF8[1:0] MODE8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30, 27:26,
23:22, 19:18, 15:14,

11:10, 7:6, 3:2

CNFy[1:0]: Port x configuration bits (y= 8 .. 15)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 16: Port bit configuration table.
In input mode (MODE[1:0]=00):
00: Analog mode
01: Floating input (reset state)
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE[1:0] > 00):
00: General purpose output push-pull
01: General purpose output Open-drain
10: Alternate function output Push-pull
11: Alternate function output Open-drain

Bits 29:28, 25:24,
21:20, 17:16, 13:12,

9:8, 5:4, 1:0

MODEy[1:0]: Port x mode bits (y= 8 .. 15)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 16: Port bit configuration table.
00: Input mode (reset state)
01: Output mode, max speed 10 MHz.
10: Output mode, max speed 2 MHz.
11: Output mode, max speed 50 MHz.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input
value of the corresponding I/O port.

RM0041 Rev 6 115/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to
the GPIOx_BSRR register (x = A .. E).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x Set bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Set the corresponding ODRx bit

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

116/709 RM0041 Rev 6

7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)

Address offset: 0x14

Reset value: 0x0000 0000

7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit it is no longer possible to modify the value of
the port bit until the next reset.

Each lock bit freezes the corresponding 4 bits of the control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved

Bits 15:0 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Reset the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0041 Rev 6 117/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.3 Alternate function I/O and debug configuration (AFIO)

To optimize the number of peripherals available for the 64-pin or the 100-pin or the 144-pin
package, it is possible to remap some alternate functions to some other pins. This is
achieved by software, by programming the AF remap and debug I/O configuration register
(AFIO_MAPR). In this case, the alternate functions are no longer mapped to their original
assignations.

7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose I/O
PC14 and PC15, respectively, when the LSE oscillator is off. The LSE has priority over the
GP IOs function.

Note: The PC14/PC15 GPIO functionality is lost when the 1.8 V domain is powered off (by
entering standby mode) or when the backup domain is supplied by VBAT (VDD no more
supplied). In this case the IOs are set in analog mode.

Refer to the note on IO usage restrictions in Section 4.1.2: Battery backup domain.

7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose I/O PD0/PD1
by programming the PD01_REMAP bit in the AF remap and debug I/O configuration register
(AFIO_MAPR).

This remap is available only on 48- and 64-pin packages (PD0 and PD1 are available on
100-pin and 144-pin packages, no need for remapping).

Note: The external interrupt/event function is not remapped. PD0 and PD1 cannot be used for
external interrupt/event generation on 48- and 64-pin packages.

Bits 31:17 Reserved

Bit 16 LCKK[16]: Lock key

This bit can be read anytime. It can only be modified using the Lock Key Writing Sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. GPIOx_LCKR register is locked until the next reset.

LOCK key writing sequence:
Write 1
Write 0
Write 1
Read 0
Read 1 (this read is optional but confirms that the lock is active)

Note: During the LOCK Key Writing sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence will abort the lock.

Bits 15:0 LCKy: Port x Lock bit y (y= 0 .. 15)

These bits are read write but can only be written when the LCKK bit is 0.
0: Port configuration not locked
1: Port configuration locked.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

118/709 RM0041 Rev 6

7.3.3 JTAG/SWD alternate function remapping

The debug interface signals are mapped on the GPIO ports as shown in Table 28.

To optimize the number of free GPIOs during debugging, this mapping can be configured in
different ways by programming the SWJ_CFG[1:0] bits in the AF remap and debug I/O
configuration register (AFIO_MAPR). Refer to Table 29.

7.3.4 Timer alternate function remapping

Timer 4 channels 1 to 4 can be remapped from Port B to Port D. Other timer remapping
possibilities are listed in Table 35 to Table 37. Refer to AF remap and debug I/O
configuration register (AFIO_MAPR).

Table 28. Debug interface signals

Alternate function GPIO port

JTMS / SWDIO PA13

JTCK / SWCLK PA14

JTDI PA15

JTDO / TRACESWO PB3

NJTRST PB4

TRACECK PE2

TRACED0 PE3

TRACED1 PE4

TRACED2 PE5

TRACED3 PE6

Table 29. Debug port mapping

SWJ _CFG
[2:0]

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/S
WCLK

PA15 /
JTDI

PB3 / JTDO/
TRACE
SWO

PB4/
NJTRST

000
Full SWJ (JTAG-DP + SW-DP)
(Reset state)

X X X X X

001
Full SWJ (JTAG-DP + SW-DP)
but without NJTRST

X X X x Free

010
JTAG-DP Disabled and
SW-DP Enabled

X X Free Free(1) Free

100
JTAG-DP Disabled and
SW-DP Disabled

Free Free Free Free Free

Other Forbidden - - - - -

1. Released only if not using asynchronous trace.

RM0041 Rev 6 119/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Table 30. TIM5 alternate function remapping(1)

1. Remap available only for high-density value line devices.

Alternate function TIM5CH4_IREMAP = 0 TIM5CH4_IREMAP = 1

TIM5_CH4
TIM5 Channel 4 is
connected to PA3

LSI internal clock is connected to TIM5_CH4
input for calibration purpose.

Table 31. TIM12 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Alternate function TIM12_REMAP = 0 TIM12_REMAP = 1

TIM12_CH1 PC4 PB12

TIM12_CH2 PC5 PB13

Table 32. TIM13 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Alternate function TIM13_REMAP = 0 TIM13_REMAP = 1

TIM13_CH1 PC8 PB0

Table 33. TIM14 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Alternate function TIM14_REMAP = 0 TIM14_REMAP = 1

TIM14_CH1 PC9 PB1

Table 34. TIM4 alternate function remapping

Alternate function TIM4_REMAP = 0 TIM4_REMAP = 1(1)

1. Remap available only for 100-pin and for 144-pin package.

TIM4_CH1 PB6 PD12

TIM4_CH2 PB7 PD13

TIM4_CH3 PB8 PD14

TIM4_CH4 PB9 PD15

Table 35. TIM3 alternate function remapping

Alternate function
TIM3_REMAP[1:0] =

“00” (no remap)
TIM3_REMAP[1:0] =
“10” (partial remap)

TIM3_REMAP[1:0] =
“11” (full remap) (1)

TIM3_CH1 PA6 PB4 PC6

TIM3_CH2 PA7 PB5 PC7

TIM3_CH3 PB0 PC8

TIM3_CH4 PB1 PC9

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

120/709 RM0041 Rev 6

1. Remap available only for 64-pin, 100-pin and 144-pin packages.

Table 36. TIM2 alternate function remapping

Alternate
function

TIM2_REMAP
[1:0] = “00”
(no remap)

TIM2_REMAP
[1:0] = “01”

(partial remap)

TIM2_REMAP
[1:0] = “10”

(partial remap)

TIM2_REMAP
[1:0] = “11”
(full remap)

TIM2_CH1_ETR(1)

1. TIM_CH1 and TIM_ETR share the same pin but cannot be used at the same time (which is why we have
this notation: TIM2_CH1_ETR).

PA0 PA15 PA0 PA15

TIM2_CH2 PA1 PB3 PA1 PB3

TIM2_CH3 PA2 PB10

TIM2_CH4 PA3 PB11

Table 37. TIM1 alternate function remapping

Alternate functions
mapping

TIM1_REMAP[1:0] =
“00” (no remap)

TIM1_REMAP[1:0] =
“01” (partial remap)

TIM1_REMAP[1:0] =
“11” (full remap)(1)

1. Remap available only for 100-pin and 144-pin packages.

TIM1_ETR PA12 PE7

TIM1_CH1 PA8 PE9

TIM1_CH2 PA9 PE11

TIM1_CH3 PA10 PE13

TIM1_CH4 PA11 PE14

TIM1_BKIN PB12 PA6 PE15

TIM1_CH1N PB13 PA7 PE8

TIM1_CH2N PB14 2) PB0 PE10

TIM1_CH3N PB15(2) PB1 PE12

Table 38. TIM1 DMA remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2).

DMA requests TIM1_DMA_REMAP = 0 TIM1_DMA_REMAP = 1

TIM1_CH1 DMA request Mapped on DMA1 Channel2 Mapped on DMA1 Channel6

TIM1_CH2 DMA request Mapped on DMA1 Channel3 Mapped on DMA1 Channel6

Table 39. TIM15 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2).

Alternate function TIM15_REMAP = 0 TIM15_REMAP = 1

TIM15_CH1 PA2 PB14

TIM15_CH2 PA3 PB15

RM0041 Rev 6 121/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.3.5 USART alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR).

Table 40. TIM16 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2).

Alternate function TIM16_REMAP = 0 TIM16_REMAP = 1

TIM16_CH1 PB8 PA6

Table 41. TIM17 remapping(1)

1. Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O
configuration register (AFIO_MAPR2).

Alternate function TIM17_REMAP = 0 TIM17_REMAP = 1

TIM17_CH1 PB9 PA7

Table 42. USART3 remapping

Alternate function
USART3_REMAP[1:0]

= “00” (no remap)
USART3_REMAP[1:0] =
“01” (partial remap) (1)

1. Remap available only for 64-pin, 100-pin and 144-pin packages

USART3_REMAP[1:0]
= “11” (full remap) (2)

2. Remap available only for 100-pin and 144-pin packages.

USART3_TX PB10 PC10 PD8

USART3_RX PB11 PC11 PD9

USART3_CK PB12 PC12 PD10

USART3_CTS PB13 PD11

USART3_RTS PB14 PD12

Table 43. USART2 remapping

Alternate functions USART2_REMAP = 0 USART2_REMAP = 1(1)

1. Remap available only for 100-pin and 144-pin packages.

USART2_CTS PA0 PD3

USART2_RTS PA1 PD4

USART2_TX PA2 PD5

USART2_RX PA3 PD6

USART2_CK PA4 PD7

Table 44. USART1 remapping

Alternate function USART1_REMAP = 0 USART1_REMAP = 1

USART1_TX PA9 PB6

USART1_RX PA10 PB7

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

122/709 RM0041 Rev 6

7.3.6 I2C1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

7.3.7 SPI1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

7.3.8 CEC remap

Refer to Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

Table 45. I2C1 remapping

Alternate function I2C1_REMAP = 0 I2C1_REMAP = 1

I2C1_SCL PB6 PB8

I2C1_SDA PB7 PB9

Table 46. SPI1 remapping

Alternate function SPI1_REMAP = 0 SPI1_REMAP = 1

SPI1_NSS PA4 PA15

SPI1_SCK PA5 PB3

SPI1_MISO PA6 PB4

SPI1_MOSI PA7 PB5

Table 47. CEC remapping

Alternate function CEC_REMAP = 0 CEC_REMAP = 1

CEC PB8 PB10

RM0041 Rev 6 123/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.4 AFIO registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

Note: To read/write the AFIO_EVCR, AFIO_MAPR, AFIO_MAPR2 and AFIO_EXTICRX registers,
the AFIO clock should first be enabled. Refer to APB2 peripheral clock enable register
(RCC_APB2ENR).

The peripheral registers have to be accessed by words (32-bit).

7.4.1 Event control register (AFIO_EVCR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EVOE PORT[2:0] PIN[3:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved

Bit 7 EVOE: Event output enable

Set and cleared by software. When set the EVENTOUT Cortex® output is connected to the
I/O selected by the PORT[2:0] and PIN[3:0] bits.

Bits 3:0 PIN[3:0]: Pin selection (x = A .. E)

Set and cleared by software. Select the pin used to output the Cortex® EVENTOUT signal.
0000: Px0 selected
0001: Px1 selected
0010: Px2 selected
0011: Px3 selected
...
1111: Px15 selected

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

124/709 RM0041 Rev 6

7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SWJ_CFG[2:0]

Reserved

TIM5CH4
_IREMAP

w w w rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PD01_
REMAP Reserved

TIM4_
REMAP

TIM3_REMAP
[1:0]

TIM2_REMAP
[1:0]

TIM1_REMAP
[1:0]

USART3_
REMAP[1:0]

USART2_
REMAP

USART1_
REMAP

I2C1_
REMAP

SPI1_
REMAP

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved

Bits 26:24 SWJ_CFG[2:0]: Serial wire JTAG configuration

These bits are write-only (when read, the value is undefined). They are used to configure the
SWJ and trace alternate function I/Os. The SWJ (Serial Wire JTAG) supports JTAG or SWD
access to the Cortex® debug port. The default state after reset is SWJ ON without trace.
This allows JTAG or SW mode to be enabled by sending a specific sequence on the JTMS /
JTCK pin.
000: Full SWJ (JTAG-DP + SW-DP): Reset State
001: Full SWJ (JTAG-DP + SW-DP) but without NJTRST
010: JTAG-DP Disabled and SW-DP Enabled
100: JTAG-DP Disabled and SW-DP Disabled
Other combinations: no effect

Bits 23:17 Reserved.

Bit 15 PD01_REMAP: Port D0/Port D1 mapping on OSC_IN/OSC_OUT

This bit is set and cleared by software. It controls the mapping of PD0 and PD1 GPIO
functionality. When the HSE oscillator is not used (application running on internal 8 MHz RC)
PD0 and PD1 can be mapped on OSC_IN and OSC_OUT. This is available only on 48- and
64-pin packages (PD0 and PD1 are available on 100-pin packages, no need for remapping).
0: No remapping of PD0 and PD1
1: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT,

Bits 14:13 Reserved.

Bit 12 TIM4_REMAP: TIM4 remapping

This bit is set and cleared by software. It controls the mapping of TIM4 channels 1 to 4 onto
the GPIO ports.
0: No remap (TIM4_CH1/PB6, TIM4_CH2/PB7, TIM4_CH3/PB8, TIM4_CH4/PB9)
1: Full remap (TIM4_CH1/PD12, TIM4_CH2/PD13, TIM4_CH3/PD14, TIM4_CH4/PD15)

Note: TIM4_ETR on PE0 is not re-mapped.

Bits 11:10 TIM3_REMAP[1:0]: TIM3 remapping

These bits are set and cleared by software. They control the mapping of TIM3 channels 1 to
4 on the GPIO ports.
00: No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1)
01: Not used
10: Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1)
11: Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9)

Note: TIM3_ETR on PE0 is not re-mapped.

RM0041 Rev 6 125/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Bits 9:8 TIM2_REMAP[1:0]: TIM2 remapping

These bits are set and cleared by software. They control the mapping of TIM2 channels 1 to
4 and external trigger (ETR) on the GPIO ports.
00: No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3)
01: Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3)
10: Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11)
11: Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11)

Bits 7:6 TIM1_REMAP[1:0]: TIM1 remapping

These bits are set and cleared by software. They control the mapping of TIM1 channels 1 to
4, 1N to 3N, external trigger (ETR) and Break input (BKIN) on the GPIO ports.
00: No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12,
CH1N/PB13, CH2N/PB14, CH3N/PB15)
01: Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6,
CH1N/PA7, CH2N/PB0, CH3N/PB1)
10: not used
11: Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15,
CH1N/PE8, CH2N/PE10, CH3N/PE12)

Bits 5:4 USART3_REMAP[1:0]: USART3 remapping

These bits are set and cleared by software. They control the mapping of USART3 CTS,
RTS,CK,TX and RX alternate functions on the GPIO ports.
00: No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14)
01: Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14)
10: not used
11: Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12)

Bit 3 USART2_REMAP: USART2 remapping

This bit is set and cleared by software. It controls the mapping of USART2 CTS, RTS,CK,TX
and RX alternate functions on the GPIO ports.
0: No remap (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4)
1: Remap (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7)

Bit 2 USART1_REMAP: USART1 remapping

This bit is set and cleared by software. It controls the mapping of USART1 TX and RX
alternate functions on the GPIO ports.
0: No remap (TX/PA9, RX/PA10)
1: Remap (TX/PB6, RX/PB7)

Bit 1 I2C1_REMAP: I2C1 remapping

This bit is set and cleared by software. It controls the mapping of I2C1 SCL and SDA
alternate functions on the GPIO ports.
0: No remap (SCL/PB6, SDA/PB7)
1: Remap (SCL/PB8, SDA/PB9)

Bit 0 SPI1_REMAP: SPI1 remapping

This bit is set and cleared by software. It controls the mapping of SPI1 NSS, SCK, MISO,
MOSI alternate functions on the GPIO ports.
0: No remap (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7)
1: Remap (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5)

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

126/709 RM0041 Rev 6

7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1)

Address offset: 0x08

Reset value: 0x0000

7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 0 to 3)

These bits are written by software to select the source input for EXTIx external interrupt.
Refer to Section 8.2.5: External interrupt/event line mapping
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 4 to 7)

These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

RM0041 Rev 6 127/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3)

Address offset: 0x10

Reset value: 0x0000

7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4)

Address offset: 0x14

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 8 to 11)

These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 12 to 15)

These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

128/709 RM0041 Rev 6

7.4.7 AF remap and debug I/O configuration register (AFIO_MAPR2)

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MISC
_

REM
AP

TIM12_
REMA

P

TIM67_
DAC_
DMA_
REMA

P

FSM
C_NA

DV

TIM14_
REMA

P

TIM13_
REMA

P Reserved

TIM1_
DMA_

REMAP

CEC_
REMA

P

TIM17_
REMA

P

TIM16_
REMA

P

TIM15_
REMA

P

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved.

Bit 13 MISC_REMAP: Miscellaneous features remapping.

This bit is set and cleared by software. It controls miscellaneous features
The DMA2 channel 5 interrupt position in the vector table
The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the
DAC_CR register).
0: DMA2 channel 5 interrupt is mapped with DMA2 channel 4 at position 59, TIM5 TRGO
event is selected as DAC Trigger 3, TIM5 triggers TIM1/3.
1: DMA2 channel 5 interrupt is mapped separately at position 60 and TIM15 TRGO event is
selected as DAC Trigger 3, TIM15 triggers TIM1/3.

Note: This bit is available only in high density value line devices.

Bit 12 TIM12_REMAP: TIM12 remapping

This bit is set and cleared by software. It controls the mapping of the TIM12_CH1 and
TIM12_CH2 alternate function onto the GPIO ports.
0: No remap (CH1/PC4, CH2/PC5)
1: Remap (CH1/PB12, CH2/PB13)

Note: This bit is available only in high density value line devices.

Bit 11 TIM76_DAC_DMA_REMAP: TIM67_DAC DMA remapping

This bit is set and cleared by software. It controls the mapping of the TIM6_DAC1 and
TIM7_DAC2 DMA requests onto the DMA1 channels.
0: No remap (TIM6_DAC1 DMA request/DMA2 Channel3, TIM7_DAC2 DMA request/DMA2
Channel4)
1: Remap (TIM6_DAC1 DMA request/DMA1 Channel3, TIM7_DAC2 DMA request/DMA1
Channel4)

Bit 10 FSMC_NADV: NADV connect/disconnect

This bit is set and cleared by software. It controls the use of the optional FSMC_NADV
signal.
0: The NADV signal is connected to the output (default)
1: The NADV signal is not connected. The I/O pin can be used by another peripheral.

Note: This bit is available only in high density value line devices.

Bit 9 TIM14_REMAP: TIM14 remapping

This bit is set and cleared by software. It controls the mapping of the TIM14_CH1 alternate
function onto the GPIO ports.
0: No remap (PC9)
1: Remap (PB1)

RM0041 Rev 6 129/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

Bit 8 TIM13_REMAP: TIM13 remapping

This bit is set and cleared by software. It controls the mapping of the TIM13_CH1 alternate
function onto the GPIO ports.
0: No remap (PC8)
1: Remap (PB0)

Bits 7:5 Reserved.

Bit 4 TIM1_DMA_REMAP: TIM1 DMA remapping

This bit is set and cleared by software. It controls the mapping of the TIM1 channel 1 and
channel 2 DMA requests onto the DMA1 channels.
0: No remap (TIM1_CH1 DMA request/DMA1 Channel2, TIM1_CH2 DMA request/DMA1
Channel3)
1: Remap (TIM1_CH1 DMA request/DMA1 Channel6, TIM1_CH2 DMA request/DMA1
Channel6)

Bit 3 CEC_REMAP: CEC remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of
the CEC line onto the GPIO ports.
0: No remap (CEC/PB8)
1: Remap (CEC/PB10)

Bit 2 TIM17_REMAP: TIM17 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of
TIM17 channel 1 onto the GPIO ports.
0: No remap (CH1/PB9)
1: Remap (CH1/PA7)

Bit 1 TIM16_REMAP: TIM16 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of
TIM16 channel 1 onto the GPIO ports.
0: No remap (CH1/PB8)
1: Remap (CH1/PA6)

Bit 0 TIM15_REMAP: TIM15 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of
TIM15 channels 1 and 2 onto the GPIO ports.
0: No remap (CH1/PA2, CH2/PA3)
1: Remap (CH1/PB14, CH2/PB15)

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0041

130/709 RM0041 Rev 6

7.5 GPIO and AFIO register maps

The following tables give the GPIO and AFIO register map and the reset values.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 48. GPIO register map and reset values

O
ff

se
t

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
GPIOx
_CRL

CNF
7

[1:0]

MODE
7

[1:0]

CNF
6

[1:0]

MODE
6

[1:0]

CNF
5

[1:0]

MODE
5

[1:0]

CNF
4

[1:0]

MODE
4

[1:0]

CNF
3

[1:0]

MOD
E3

[1:0]

CNF
2

[1:0]

MODE
2

[1:0]

CNF
1

[1:0]

MOD
E1

[1:0]

CNF
0

[1:0]

MODE
0

[1:0]

Reset value 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0x04
GPIOx
_CRH

CNF
15

[1:0]

MODE
15

[1:0]

CNF
14

[1:0]

MODE
14

[1:0]

CNF
13

[1:0]

MODE
13

[1:0]

CNF
12

[1:0]

MODE
12

[1:0]

CNF
11

[1:0]

MOD
E11
[1:0]

CNF
10

[1:0]

MODE
10

[1:0]

CNF
9

[1:0]

MOD
E9

[1:0]

CNF
8

[1:0]

MODE
8

[1:0]

Reset value 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0x08
GPIOx
_IDR Reserved

IDRy

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
GPIOx
_ODR Reserved

ODRy

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
GPIOx
_BSRR

BR[15:0] BSR[15:0]

Reset value 0

0x14
GPIOx
_BRR Reserved

BR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
GPIOx
_LCKR Reserved

LC
K

K

LCK[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 49. AFIO register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
AFIO_EVCR

Reserved

E
V

O
E PORT[2:

0]
PIN[3:0]

Reset value 0 0 0 0 0 0 0

0x04
AFIO_MAPR

Reserved
SWJ_

CFG[2:0] Reserved

T
IM

5
C

H
4

_
IR

E
M

A
P

P
D

0
1

_
R

E
M

A
P

R
e

se
rv

e
d

T
IM

4
_

R
E

M
A

P

T
IM

3
_R

E
M

A
P

[1
:0

]

T
IM

2
_R

E
M

A
P

[1
:0

]

T
IM

1
_R

E
M

A
P

[1
:0

]

U
S

A
R

T
3

_R
E

M
A

P
[1

:0
]

U
S

A
R

T
2

_
R

E
M

A
P

U
S

A
R

T
1

_
R

E
M

A
P

I2
C

1
_

R
E

M
A

P

S
P

I1
_R

E
M

A
P

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0041 Rev 6 131/709

RM0041 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

131

0x08
AFIO_EXTICR1

Reserved
EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
AFIO_EXTICR2

Reserved
EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
AFIO_EXTICR3

Reserved
EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
AFIO_EXTICR4

Reserved
EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
AFIO_MAPR2

Reserved

M
IS

C
_

 R
E

M
A

P

T
IM

1
2_

R
E

M
A

P

T
IM

6
7

_
D

A
C

_
D

M
A

_
R

E
M

A
P

F
S

M
C

_N
A

D
V

T
IM

1
4_

R
E

M
A

P

T
IM

1
3_

R
E

M
A

P

Res.

T
IM

1
_

D
M

A
_

R
E

M
A

P

C
E

C
_

R
E

M
A

P

T
IM

1
7_

R
E

M
A

P

T
IM

1
6_

R
E

M
A

P

T
IM

1
5_

R
E

M
A

P

Reset value 0 0 0 0 0 0 0 0 0 0 0

Table 49. AFIO register map and reset values (continued)

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Interrupts and events RM0041

132/709 RM0041 Rev 6

8 Interrupts and events

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

8.1 Nested vectored interrupt controller (NVIC)

Features

• 60 maskable interrupt channels in high-density value line devices and 56 in low and
medium-density value line devices (not including the sixteen Cortex®-M3 interrupt
lines)

• 16 programmable priority levels (4 bits of interrupt priority are used)

• Low-latency exception and interrupt handling

• Power management control

• Implementation of System Control registers

The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to STM32F100xx Cortex®-M3 programming
manual (see Related documents on page 1).

8.1.1 SysTick calibration value register

The SysTick calibration value is set to 9000, which gives a reference time base of 3 ms with
the SysTick clock set to 3 MHz (max HCLK/8).

8.1.2 Interrupt and exception vectors

Table 50. Vector table for STM32F100xx devices

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

- - - - Reserved 0x0000_0000

- -3 fixed Reset Reset 0x0000_0004

RM0041 Rev 6 133/709

RM0041 Interrupts and events

143

- -2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

- -1 fixed HardFault_Handler All class of fault 0x0000_000C

- 0 settable
MemManage_Handl
er

Memory management 0x0000_0010

- 1 settable BusFault_Handler Pre-fetch fault, memory access fault 0x0000_0014

- 2 settable UsageFault_Handler Undefined instruction or illegal state 0x0000_0018

- - - - Reserved
0x0000_001C -
0x0000_002B

- 3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

- 4 settable DebugMon_Handler Debug Monitor 0x0000_0030

- - - - Reserved 0x0000_0034

- 5 settable PendSV_Handler
Pendable request for system
service

0x0000_0038

- 6 settable SysTick_Handler System tick timer 0x0000_003C

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line detection
interrupt

0x0000_0044

2 9 settable TAMPER_STAMP
Tamper and TimeStamp through
EXTI line interrupts

0x0000_0048

3 10 settable RTC_WKUP
RTC Wakeup through EXTI line
interrupt

0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

Table 50. Vector table for STM32F100xx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

Interrupts and events RM0041

134/709 RM0041 Rev 6

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1 ADC1 global interrupt 0x0000_0088

- - - - Reserved
0x0000_008C -
0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable TIM1_BRK_TIM15
TIM1 Break and TIM15 global
interrupt

0x0000_00A0

25 32 settable TIM1_UP_TIM16
TIM1 Update and TIM16 global
interrupts

0x0000_00A4

26 33 settable
TIM1_TRG_COM_T
IM17

TIM1 Trigger and Commutation and
TIM17 global interrupts

0x0000_00A8

27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTC_Alarm
RTC Alarms (A and B) through EXTI
line interrupt

0x0000_00E4

42 49 settable CEC CEC global interrupt 0x0000_00E8

Table 50. Vector table for STM32F100xx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

RM0041 Rev 6 135/709

RM0041 Interrupts and events

143

43 50 settable TIM12 TIM12 global interrupt 0x0000_00EC

44 51 settable TIM13 TIM13 global interrupt 0x0000_00F0

45 52 settable TIM14 TIM14 global interrupt 0x0000_00F4

- - - - Reserved
0x0000_00F8 -
0x0000_00FC

48 55 settable FSMC FSMC global interrupt 0x0000_0100

- - - - Reserved 0x0000_0104

50 57 settable TIM5 TIM5 global interrupt 0x0000_0108

51 58 settable SPI3 SPI3 global interrupt 0x0000_010C

52 59 settable UART4 UART4 global interrupt 0x0000_0110

53 60 settable UART5 UART5 global interrupt 0x0000_0114

54 61 settable TIM6_DAC
TIM6 global and DAC underrun
interrupts

0x0000_0118

55 62 settable TIM7 TIM7 global interrupt 0x0000_011C

56 63 settable DMA2_Channel1 DMA2 Channel1 global interrupt 0x0000_0120

57 64 settable DMA2_Channel2 DMA2 Channel2 global interrupt 0x0000_0124

58 65 settable DMA2_Channel3 DMA2 Channel3 global interrupt 0x0000_0128

59 66 settable DMA2_Channel4_5
DMA2 Channel4 and DMA2
Channel5 global interrupts

0x0000_012C

60 67 settable DMA2_Channel5(1) DMA2 Channel5 global interrupt 0x0000_0130

1. For High-density value line devices, the DMA2 Channel 5 is mapped at postion 60 only if the
MISC_REMAP bit in the AFIO_MAPR2 register is set and DMA2 Channel 2 is connected with DMA2
Channel 4 at position 59 when the MISC_REMAP bit in the AFIO_MAPR2 register is reset.

Table 50. Vector table for STM32F100xx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

Interrupts and events RM0041

136/709 RM0041 Rev 6

8.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 18 edge detectors for generating
event/interrupt requests. Each input line can be independently configured to select the type
(event or interrupt) and the corresponding trigger event (rising or falling or both). Each line
can also masked independently. A pending register maintains the status line of the interrupt
requests

8.2.1 Main features

The EXTI controller main features are the following:

• Independent trigger and mask on each interrupt/event line

• Dedicated status bit for each interrupt line

• Generation of up to 18 software event/interrupt requests

• Detection of external signal with pulse width lower than APB2 clock period. Refer to the
electrical characteristics section of the datasheet for details on this parameter.

8.2.2 Block diagram

The block diagram is shown in Figure 18.

Figure 18. External interrupt/event controller block diagram

trigger
selection

Peripheral interface

Edge detect

AMBA APB bus

PCLK2

18

18 181818

circuit

interrupt

18

Software
trigger

selection

Rising Falling

18

Event
mask

Pulse
generator

18

18

18 18
Input
Line

register register

register

18

18

event
register

MS19817V1

Pending
request
register

Interrupt
mask
register

To NVIC interrupt
controller

RM0041 Rev 6 137/709

RM0041 Interrupts and events

143

8.2.3 Wakeup event management

The STM32F100xx is able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated either by:

• enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

• or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 8.2.4: Functional description.

8.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register.
When the selected edge occurs on the external interrupt line, an interrupt request is
generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a ‘1’ in the pending register.

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set

An interrupt/event request can also be generated by software by writing a ‘1’ in the software
interrupt/event register.

Hardware interrupt selection

To configure the 18 lines as interrupt sources, use the following procedure:

• Configure the mask bits of the 18 Interrupt lines (EXTI_IMR)

• Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and
EXTI_FTSR)

• Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
External Interrupt Controller (EXTI) so that an interrupt coming from one of the 18 lines
can be correctly acknowledged.

Hardware event selection

To configure the 18 lines as event sources, use the following procedure:

• Configure the mask bits of the 18 Event lines (EXTI_EMR)

• Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

Interrupts and events RM0041

138/709 RM0041 Rev 6

Software interrupt/event selection

The 18 lines can be configured as software interrupt/event lines. The following is the
procedure to generate a software interrupt.

• Configure the mask bits of the 18 Interrupt/Event lines (EXTI_IMR, EXTI_EMR)

• Set the required bit of the software interrupt register (EXTI_SWIER)

8.2.5 External interrupt/event line mapping

The 112 GPIOs are connected to the 16 external interrupt/event lines in the following
manner:

RM0041 Rev 6 139/709

RM0041 Interrupts and events

143

Figure 19. External interrupt/event GPIO mapping

1. To configure the AFIO_EXTICRx for the mapping of external interrupt/event lines onto GPIOs, the AFIO
clock should first be enabled. Refer to Section 6.3.7: APB2 peripheral clock enable register
(RCC_APB2ENR).

The two other EXTI lines are connected as follows:

• EXTI line 16 is connected to the PVD output

• EXTI line 17 is connected to the RTC Alarm event

EXTI0

PA0

PB0

PC0

PD0

PE0

EXTI0[3:0] bits in AFIO_EXTICR1 register

PF0

PG0

EXTI1

PA1

PB1

PC1

PD1

PE1

EXTI1[3:0] bits in AFIO_EXTICR1 register

PF1

PG1

EXTI15

PA15

PB15

PC15

PD15

PE15

EXTI15[3:0] bits in AFIO_EXTICR4 register

PF15

PG15

Interrupts and events RM0041

140/709 RM0041 Rev 6

8.3 EXTI registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

8.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00
Reset value: 0x0000 0000

8.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR17 MR16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 MRx: Interrupt Mask on line x

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR17 MR16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 MRx: Event mask on line x

0: Event request from Line x is masked
1: Event request from Line x is not masked

RM0041 Rev 6 141/709

RM0041 Interrupts and events

143

8.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitches must be generated on these lines.
If a rising edge on external interrupt line occurs during writing of EXTI_RTSR register, the
pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

8.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitches must be generated on these lines.
If a falling edge on external interrupt line occurs during writing of EXTI_FTSR register, the
pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR17 TR16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 TRx: Rising trigger event configuration bit of line x

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR17 TR16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 TRx: Falling trigger event configuration bit of line x

0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line

Interrupts and events RM0041

142/709 RM0041 Rev 6

8.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

8.3.6 Pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

SWIER
17

SWIER
16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWIER
15

SWIER
14

SWIER
13

SWIER
12

SWIER
11

SWIER
10

SWIER
9

SWIER
8

SWIER
7

SWIER
6

SWIER
5

SWIER
4

SWIER
3

SWIER
2

SWIER
1

SWIER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 SWIERx: Software interrupt on line x

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0'
sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.
This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a 1 into the bit)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PR17 PR16

rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:18 Reserved, must be kept at reset value (0).

Bits 17:0 PRx: Pending bit

0: No trigger request occurred
1: selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing a ‘1’ into the bit.

RM0041 Rev 6 143/709

RM0041 Interrupts and events

143

8.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 51. External interrupt/event controller register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

Reserved
MR[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
EXTI_EMR

Reserved
EMR[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
EXTI_RTSR

Reserved
RTSR[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
EXTI_FTSR

Reserved FTSR[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
EXTI_SWIER

Reserved SWIER[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
EXTI_PR

Reserved PR[17:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Direct memory access controller (DMA) RM0041

144/709 RM0041 Rev 6

9 Direct memory access controller (DMA)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

9.1 DMA introduction

Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 12 channels in total (7 for DMA1 and 5 for DMA2), each
dedicated to managing memory access requests from one or more peripherals. It has an
arbiter for handling the priority between DMA requests.

9.2 DMA main features

• 12 independently configurable channels (requests): 7 for DMA1 and 5 for DMA2

• Each of the 12 channels is connected to dedicated hardware DMA requests, software
trigger is also supported on each channel. This configuration is done by software.

• Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

• Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

• Support for circular buffer management

• 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel

• Memory-to-memory transfer

• Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers

• Access to flash, SRAM, APB1, APB2 and AHB peripherals as source and destination

• Programmable number of data to be transferred: up to 65536

The block diagram is shown in Figure 20 and Figure 21.

RM0041 Rev 6 145/709

RM0041 Direct memory access controller (DMA)

161

Figure 20. DMA block diagram in low and medium- density
Cat.1 and Cat.2 STM32F100xx devices

FLASH
(Flash

interface)

Ch.1

Ch.2

Ch.7

Arbiter

Cortex-M3

SRAM

AHB Slave

DMA

ICode

DCode

APB1

Flash
memory

Bridge 2
Bridge 1 APB2

ai17309

B
us

 m
at

rix

DMA Reset & clock
control (RCC)

TIM17
TIM16
TIM15
ADC1
USART1
SPI1
TIM1

TIM7
TIM6
TIM4
TIM3
TIM2

CRC

DAC
I2C2
I2C1
USART3
USART2
SPI2

Direct memory access controller (DMA) RM0041

146/709 RM0041 Rev 6

Figure 21. DMA block diagram in high-density
Cat.4 and Cat.5 STM32F100xx devices

Note: The DMA2 controller and its related requests are available only in High density value line
devices.

SPI3, UART4, UART5and TIM5 DMA requests are available only in High density value line
devices.

9.3 DMA functional description

The DMA controller performs direct memory transfer by sharing the system bus with the
Cortex®-M3 core. The DMA request may stop the CPU access to the system bus for some
bus cycles, when the CPU and DMA are targeting the same destination (memory or
peripheral). The bus matrix implements round-robin scheduling, thus ensuring at least half
of the system bus bandwidth (both to memory and peripheral) for the CPU.

9.3.1 DMA transactions

After an event, the peripheral sends a request signal to the DMA controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
controller. The peripheral releases its request as soon as it gets the Acknowledge from the

FLITF

Ch.1

Ch.2

Ch.7

Arbiter

Cortex-M3

SRAM

AHB Slave

DMA1

ICode

DCode

System

DMA request

APB2

Flash

Bridge 2

Bridge 1

Ch.1

Ch.2

Ch.5

Arbiter

AHB Slave

DMA2

FSMC

APB1

DMA request

DMA request

B
us

 m
at

rixDMA

D
M

A

Reset & clock control
(RCC)

AHB System

ai18303

 SPI2

 TIM2

SPI3
TIM7
TIM6
TIM5
TIM4
TIM3

DAC

I2C2
I2C1
UART5
UART4
USART3
USART2

USART1
SPI1
TIM1

ADC1

TIM17
TIM16
TIM15

DMA request

RM0041 Rev 6 147/709

RM0041 Direct memory access controller (DMA)

161

DMA controller. Once the request is deasserted by the peripheral, the DMA controller
releases the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.

In summary, each DMA transfer consists of three operations:

• The loading of data from the peripheral data register or a location in memory addressed
through an internal current peripheral/memory address register. The start address used
for the first transfer is the base peripheral/memory address programmed in the
DMA_CPARx or DMA_CMARx register

• The storage of the data loaded to the peripheral data register or a location in memory
addressed through an internal current peripheral/memory address register. The start
address used for the first transfer is the base peripheral/memory address programmed
in the DMA_CPARx or DMA_CMARx register

• The post-decrementing of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.

9.3.2 Arbiter

The arbiter manages the channel requests based on their priority and launches the
peripheral/memory access sequences.

The priorities are managed in two stages:

• Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:

– Very high priority

– High priority

– Medium priority

– Low priority

• Hardware: if two requests have the same software priority level, the channel with the
lowest number gets priority versus the channel with the highest number. For example,
channel 2 gets priority over channel 4.

Note: In high-density value line devices, the DMA1 controller has priority over the DMA2
controller.

9.3.3 DMA channels

Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.

Programmable data sizes

Transfer data sizes of the peripheral and memory are fully programmable through the
PSIZE and MSIZE bits in the DMA_CCRx register.

Pointer incrementation

Peripheral and memory pointers can optionally be automatically post-incremented after
each transaction depending on the PINC and MINC bits in the DMA_CCRx register.
If incremented mode is enabled, the address of the next transfer is the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first transfer

Direct memory access controller (DMA) RM0041

148/709 RM0041 Rev 6

address is the one programmed in the DMA_CPARx/DMA_CMARx registers. During
transfer operations, these registers keep the initially programmed value. The current
transfer addresses (in the current internal peripheral/memory address register) are not
accessible by software.

If the channel is configured in non-circular mode, no DMA request is served after the last
transfer (that is once the number of data items to be transferred has reached zero). In order
to reload a new number of data items to be transferred into the DMA_CNDTRx register, the
DMA channel must be disabled.

Note: If a DMA channel is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during
the channel configuration phase.

In circular mode, after the last transfer, the DMA_CNDTRx register is automatically reloaded
with the initially programmed value. The current internal address registers are reloaded with
the base address values from the DMA_CPARx/DMA_CMARx registers.

Channel configuration procedure

The following sequence should be followed to configure a DMA channel x (where x is the
channel number).

1. Set the peripheral register address in the DMA_CPARx register. The data are moved
from/ to this address to/ from the memory after the peripheral event.

2. Set the memory address in the DMA_CMARx register. The data are written to or read
from this memory after the peripheral event.

3. Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each peripheral event, this value is decremented.

4. Configure the channel priority using the PL[1:0] bits in the DMA_CCRx register

5. Configure data transfer direction, circular mode, peripheral & memory incremented
mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register

6. Activate the channel by setting the ENABLE bit in the DMA_CCRx register.

As soon as the channel is enabled, it can serve any DMA request from the peripheral
connected on the channel.

Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.

Circular mode

Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and the
DMA requests continue to be served.

Memory-to-memory mode

The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode.

RM0041 Rev 6 149/709

RM0041 Direct memory access controller (DMA)

161

If the MEM2MEM bit in the DMA_CCRx register is set, then the channel initiates transfers
as soon as it is enabled by software by setting the Enable bit (EN) in the DMA_CCRx
register. The transfer stops once the DMA_CNDTRx register reaches zero. Memory to
Memory mode may not be used at the same time as Circular mode.

9.3.4 Programmable data width, data alignment and endians

When PSIZE and MSIZE are not equal, the DMA performs some data alignments as
described in Table 52.

Addressing an AHB peripheral that does not support byte or halfword write
operations

When the DMA initiates an AHB byte or halfword write operation, the data are duplicated on
the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral does
not support byte or halfword write operations (when HSIZE is not used by the peripheral)

Table 52. Programmable data width and endian behavior (when bits PINC = MINC = 1)

Source
port
width

Desti-
nation
port
width

Number
of data
items to
transfer
(NDT)

Source content:
address / data

Transfer operations
Destination

content:
address / data

8 8 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1
3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2
4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

8 16 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 00B0[15:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 00B1[15:0] @0x2
3: READ B3[7:0] @0x2 then WRITE 00B2[15:0] @0x4
4: READ B4[7:0] @0x3 then WRITE 00B3[15:0] @0x6

@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3

8 32 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4
3: READ B3[7:0] @0x2 then WRITE 000000B2[31:0] @0x8
4: READ B4[7:0] @0x3 then WRITE 000000B3[31:0] @0xC

@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3

16 8 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B2[7:0] @0x1
3: READ B5B4[15:0] @0x4 then WRITE B4[7:0] @0x2
4: READ B7B6[15:0] @0x6 then WRITE B6[7:0] @0x3

@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6

16 16 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B3B2[15:0] @0x2
3: READ B5B4[15:0] @0x4 then WRITE B5B4[15:0] @0x4
4: READ B7B6[15:0] @0x6 then WRITE B7B6[15:0] @0x6

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

16 32 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE 0000B1B0[31:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE 0000B3B2[31:0] @0x4
3: READ B5B4[15:0] @0x4 then WRITE 0000B5B4[31:0] @0x8
4: READ B7B6[15:0] @0x6 then WRITE 0000B7B6[31:0] @0xC

@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6

32 8 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3

@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC

32 16 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B1B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B5B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B9B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BDBC[7:0] @0x3

@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC

32 32 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B3B2B1B0[31:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B7B6B5B4[31:0] @0x4
3: READ BBBAB9B8[31:0] @0x8 then WRITE BBBAB9B8[31:0] @0x8
4: READ BFBEBDBC[31:0] @0xC then WRITE BFBEBDBC[31:0] @0xC

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

Direct memory access controller (DMA) RM0041

150/709 RM0041 Rev 6

and does not generate any error, the DMA writes the 32 HWDATA bits as shown in the two
examples below:

• To write the halfword “0xABCD”, the DMA sets the HWDATA bus to “0xABCDABCD”
with HSIZE = HalfWord

• To write the byte “0xAB”, the DMA sets the HWDATA bus to “0xABABABAB” with
HSIZE = Byte

Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take the
HSIZE data into account, it transforms any AHB byte or halfword operation into a 32-bit APB
operation in the following manner:

• an AHB byte write operation of the data “0xB0” to 0x0 (or to 0x1, 0x2 or 0x3) is
converted to an APB word write operation of the data “0xB0B0B0B0” to 0x0

• an AHB halfword write operation of the data “0xB1B0” to 0x0 (or to 0x2) is converted to
an APB word write operation of the data “0xB1B0B1B0” to 0x0

For instance, to write the APB backup registers (16-bit registers aligned to a 32-bit address
boundary), the memory source size (MSIZE) must be configured to “16-bit” and the
peripheral destination size (PSIZE) to “32-bit”.

9.3.5 Error management

A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the corresponding
Channel configuration register (DMA_CCRx). The channel's transfer error interrupt flag
(TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer error
interrupt enable bit (TEIE) in the DMA_CCRx register is set.

9.3.6 Interrupts

An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for
each DMA channel. Separate interrupt enable bits are available for flexibility.

Note: In high-density value line devices, DMA2 Channel4 and DMA2 Channel5 interrupts are
mapped onto the same interrupt vector. All other DMA1 and DMA2 Channel interrupts have
their own interrupt vector.

9.3.7 DMA request mapping

DMA1 controller

The 7 requests from the peripherals (TIMx[1,2,3,4,6,7,15,16,17], ADC1, SPI[1,2], I2Cx[1,2],
USARTx[1,2,3]) and DAC Channelx[1,2] are simply logically ORed before entering the
DMA1, this means that only one request must be enabled at a time. Refer to Figure 22.

Table 53. DMA interrupt requests

Interrupt event Event flag Enable Control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

RM0041 Rev 6 151/709

RM0041 Direct memory access controller (DMA)

161

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Figure 22. DMA1 request mapping

1. The TIM1_CH1 and TIM1_CH2 DMA requests are mapped on DMA Channel 2 and DMA Channel 3,
respectively, only if the TIM1_DMA_REMAP bit in the AFIO_MAPR2 register is cleared. For more details
refer to the AFIO section.

2. The TIM1_CH1 and TIM1_CH2 DMA requests are mapped on DMA Channel 6 only if the
TIM1_DMA_REMAP bit in the AFIO_MAPR2 register is set. For more details refer to the AFIO section.

3. For High-density value line devices, the TIM6_DAC1 and TIM7_DAC2 DMA requests are mapped
respectively on DMA1 Channel 3 and DMA1 Channel 4 only if the TIM67_DAC_DMA_REMAP bit in the
AFIO_MAPR2 register is set and mapped respectively on DMA2 Channel 3 and DMA2 Channel 4 when the
TIM67_DAC_DMA_REMAP bit in the AFIO_MAPR2 register is reset.

Fixed hardware priority

Channel 3

internal

HW request 3

High priority

Low priority

Peripheral

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA1

Channel 5
HW request 5

Channel 6
HW REQUEST 6

Channel 7
HW request 7

 request

ADC1

USART1_TX

TIM1_CH4

SPI1_TX

USART3_TX

USART1_RX

TIM1_UP

I2C1_TX

TIM3_CH1

I2C1_RX

TIM2_CH2

 SPI1_RX

TIM1_CH2(1)

 TIM4_CH3
TIM2_CH1
 SPI2_TX

 I2C2_RX

USART2_RX

TIM3_TRIG

 TIM1_CH3

 USART2_TX

 TIM2_CH4
 TIM4_UP

SPI2_RX
I2C2_TX

TIM1_TRIG

 TIM4_CH2

TIM3_CH4
TIM3_UP

 USART3_RX

 TIM3_CH3

 TIM1_CH1
TIM2_UP

TIM2_CH3
TIM4_CH1

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

Channel 6 EN bit

Channel 7 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW TRIGGER (MEM2MEM bit)

SW trigger (MEM2MEM bit)

 request signals

TIM1_COM

TIM1_CH1(1)

TIM6_UP/DAC_Channel1(3)

TIM7_UP/DAC_Channel2(3)

TIM15_CH1
TIM15_UP

TIM15_TRIG
TIM15_COM

TIM1_CH2(2)
TIM1_CH1(2)

TIM16_CH1
TIM16_UP

TIM17_CH1
TIM17_UP

Direct memory access controller (DMA) RM0041

152/709 RM0041 Rev 6

On low- and medium -density devices the TIM6_DAC1 and TIM7_DAC2 DMA requests are always
mapped respectively on DMA1 Channel 3 and DMA1 Channel 4. For more details refer to the AFIO
section.

Table 54 lists the DMA requests for each channel.

DMA2 controller

The five requests from the peripherals (TIMx[5,6,7], SPI3, UARTx[4,5], DAC_Channel[1,2])
are simply logically ORed before entering the DMA2, this means that only one request must
be enabled at a time. Refer to Figure 23.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Note: The DMA2 controller and its relative requests are available only in high-density value line
devices.

Table 54. Summary of DMA1 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

ADC1 ADC1 - - - - - -

SPI - SPI1_RX SPI1_TX SPI2_RX SPI2_TX - -

USART - USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX

I2C - - - I2C2_TX I2C2_RX I2C1_TX I2C1_RX

TIM1 - TIM1_CH1 -
TIM1_CH4
TIM1_TRIG
TIM1_COM

TIM1_UP
TIM1_CH3
TIM1_CH2
TIM1_CH1

-

TIM2 TIM2_CH3 TIM2_UP - - TIM2_CH1 -
TIM2_CH2
TIM2_CH4

TIM3 - TIM3_CH3
TIM3_CH4
TIM3_UP

- -
TIM3_CH1
TIM3_TRIG

-

TIM4 TIM4_CH1 - - TIM4_CH2 TIM4_CH3 - TIM4_UP

TIM6/DAC_
Channel1

-
TIM6_UP/DA
C_Channel1

-

TIM7/DAC_
Channel2

- - -
TIM7_UP/DA
C_Channel2

- - -

TIM15 - - - -

TIM15_CH1
TIM15_UP

TIM15_TRIG
TIM15_COM

- -

TIM16 - - - - -
TIM16_CH1
TIM16_UP

-

TIM17 - - - - - -
TIM17_CH1
TIM17_UP

RM0041 Rev 6 153/709

RM0041 Direct memory access controller (DMA)

161

Figure 23. DMA2 request mapping

1. For high-density value line devices, the TIM6_DAC1 and TIM7_DAC2 DMA requests are mapped
respectively on DMA1 Channel 3 and DMA1 Channel 4 only if the TIM67_DAC_DMA_REMAP bit in the
AFIO_MAPR2 register is set, and mapped respectively on DMA2 Channel 3 and DMA2 Channel 4 when
the TIM67_DAC_DMA_REMAP bit in the AFIO_MAPR2 register is reset. On low- and medium -density
devices the TIM6_DAC1 and TIM7_DAC2 DMA requests are always mapped respectively on DMA1
Channel 3 and DMA1 Channel 4. For more details refer to the AFIO section.

Table 55 lists the DMA2 requests for each channel.

Table 55. Summary of DMA2 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

SPI3 SPI3_RX SPI3_TX - -

UART4 - - UART4_RX - UART4_TX

UART5 UART5_TX - - UART5_RX -

TIM5
TIM5_CH4
TIM5_TRIG

TIM5_CH3
TIM5_UP

 - TIM5_CH2 TIM5_CH1

TIM6/
DAC_Channel1

- -
TIM6_UP/

DAC_Channel1
- -

TIM7/
DAC_Channel2

- - -
TIM7_UP/

DAC_Channel2
-

Fixed hardware priority

Channel 3

internal

HW request 3

HIGH PRIORITY

LOW PRIORITY

Peripheral request signals

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA2

Channel 5
HW request 5

 requestTIM5_CH2
UART5_RX

TIM5_CH4

TIM7_UP/DAC_Channel2(1)

UART5_TX

 TIM5_TRIG

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

 TIM5_UP
 TIM5_CH3

SPI3_TX

 UART4_RX
TIM6_UP/DAC_Channel1(1)

 UART4_TX
 TIM5_CH1

SPI3_RX

Direct memory access controller (DMA) RM0041

154/709 RM0041 Rev 6

9.4 DMA registers

Refer to for a list of abbreviations used in register descriptions.

Note: In the following registers, all bits related to channel6 and channel7 are not relevant for
DMA2 since it has only 5 channels.

The peripheral registers can be accessed by bytes (8-bit), half-words (16-bit) or words (32-
bit).

9.4.1 DMA interrupt status register (DMA_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TEIF7 HTIF7 TCIF7 GIF7 TEIF6 HTIF6 TCIF6 GIF6 TEIF5 HTIF5 TCIF5 GIF5

r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEIF4 HTIF4 TCIF4 GIF4 TEIF3 HTIF3 TCIF3 GIF3 TEIF2 HTIF2 TCIF2 GIF2 TEIF1 HTIF1 TCIF1 GIF1

r r r r r r r r r r r r r r r r

Bits 31:28 Reserved, must be kept at reset value.

Bits 27, 23, 19, 15,
11, 7, 3

TEIFx: Channel x transfer error flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x

Bits 26, 22, 18, 14,
10, 6, 2

HTIFx: Channel x half transfer flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x

Bits 25, 21, 17, 13,
9, 5, 1

TCIFx: Channel x transfer complete flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x

Bits 24, 20, 16, 12,
8, 4, 0

GIFx: Channel x global interrupt flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x

RM0041 Rev 6 155/709

RM0041 Direct memory access controller (DMA)

161

9.4.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

CTEIF
7

CHTIF
7

CTCIF7 CGIF7 CTEIF6 CHTIF6 CTCIF6 CGIF6 CTEIF5 CHTIF5 CTCIF5 CGIF5

w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTEIF
4

CHTIF
4

CTCIF
4

CGIF4
CTEIF

3
CHTIF

3
CTCIF3 CGIF3 CTEIF2 CHTIF2 CTCIF2 CGIF2 CTEIF1 CHTIF1 CTCIF1 CGIF1

w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, must be kept at reset value.

Bits 27, 23, 19, 15,
11, 7, 3

CTEIFx: Channel x transfer error clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TEIF flag in the DMA_ISR register

Bits 26, 22, 18, 14,
10, 6, 2

CHTIFx: Channel x half transfer clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding HTIF flag in the DMA_ISR register

Bits 25, 21, 17, 13,
9, 5, 1

CTCIFx: Channel x transfer complete clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TCIF flag in the DMA_ISR register

Bits 24, 20, 16, 12,
8, 4, 0

CGIFx: Channel x global interrupt clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the GIF, TEIF, HTIF and TCIF flags in the DMA_ISR register

Direct memory access controller (DMA) RM0041

156/709 RM0041 Rev 6

9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number)

Address offset: 0x08 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

MEM2
MEM

PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR TEIE HTIE TCIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 MEM2MEM: Memory to memory mode

This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled

Bits 13:12 PL[1:0]: Channel priority level

These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

Bits 11:10 MSIZE[1:0]: Memory size

These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bits 9:8 PSIZE[1:0]: Peripheral size

These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bit 7 MINC: Memory increment mode

This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled

Bit 6 PINC: Peripheral increment mode

This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled

Bit 5 CIRC: Circular mode

This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled

RM0041 Rev 6 157/709

RM0041 Direct memory access controller (DMA)

161

9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number)

Address offset: 0x0C + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

Bit 4 DIR: Data transfer direction

This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory

Bit 3 TEIE: Transfer error interrupt enable

This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

Bit 2 HTIE: Half transfer interrupt enable

This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

Bit 1 TCIE: Transfer complete interrupt enable

This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

Bit 0 EN: Channel enable

This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: Number of data to transfer

Number of data to be transferred (0 up to 65535). This register can only be written when the
channel is disabled. Once the channel is enabled, this register is read-only, indicating the
remaining bytes to be transmitted. This register decrements after each DMA transfer.
Once the transfer is completed, this register can either stay at zero or be reloaded
automatically by the value previously programmed if the channel is configured in auto-
reload mode.
If this register is zero, no transaction can be served whether the channel is enabled or not.

Direct memory access controller (DMA) RM0041

158/709 RM0041 Rev 6

9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number)

Address offset: 0x10 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number)

Address offset: 0x14 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA

rw rw

Bits 31:0 PA[31:0]: Peripheral address

Base address of the peripheral data register from/to which the data are read/written.
When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access is automatically aligned to a half-
word address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is automatically aligned to a word
address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA

rw rw

Bits 31:0 MA[31:0]: Memory address

Base address of the memory area from/to which the data are read/written.
When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Access is automatically aligned to a
half-word address.
When MSIZE is 10 (32-bit), MA[1:0] are ignored. Access is automatically aligned to a word
address.

RM0041 Rev 6 159/709

RM0041 Direct memory access controller (DMA)

161

9.4.7 DMA register map

The following table gives the DMA register map and the reset values.

Table 56. DMA register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
DMA_ISR

Reserved T
E

IF
7

H
T

IF
7

T
C

IF
7

G
IF

7

T
E

IF
6

H
T

IF
6

T
C

IF
6

G
IF

6

T
E

IF
5

H
T

IF
5

T
C

IF
5

G
IF

5

T
E

IF
4

H
T

IF
4

T
C

IF
4

G
IF

4

T
E

IF
3

H
T

IF
3

T
C

IF
3

G
IF

3

T
E

IF
2

H
T

IF
2

T
C

IF
2

G
IF

2

T
E

IF
1

H
T

IF
1

T
C

IF
1

G
IF

1

Reset value 0

0x004
DMA_IFCR

Reserved

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

Reset value 0

0x008
DMA_CCR1

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
DMA_CNDTR1

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
DMA_CPAR1 PA[31:0]

Reset value 0

0x014
DMA_CMAR1 MA[31:0]

Reset value 0

0x018 Reserved

0x01C
DMA_CCR2

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1:

0]

P
S

IZ
E

 [
1:

0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
DMA_CNDTR2

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x024
DMA_CPAR2 PA[31:0]

Reset value 0

0x028
DMA_CMAR2 MA[31:0]

Reset value 0

0x02C Reserved

0x030
DMA_CCR3

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x034
DMA_CNDTR3

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x038
DMA_CPAR3 PA[31:0]

Reset value 0

0x03C
DMA_CMAR3 MA[31:0]

Reset value 0

0x040 Reserved

Direct memory access controller (DMA) RM0041

160/709 RM0041 Rev 6

0x044
DMA_CCR4

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x048
DMA_CNDTR4

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04C
DMA_CPAR4 PA[31:0]

Reset value 0

0x050
DMA_CMAR4 MA[31:0]

Reset value 0

0x054 Reserved

0x058
DMA_CCR5

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1:

0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x05C
DMA_CNDTR5

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x060
DMA_CPAR5 PA[31:0]

Reset value 0

0x064
DMA_CMAR5 MA[31:0]

Reset value 0

0x068 Reserved

0x06C
DMA_CCR6

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x070
DMA_CNDTR6

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x074
DMA_CPAR6 PA[31:0]

Reset value 0

0x078
DMA_CMAR6 MA[31:0]

Reset value 0

0x07C Reserved

0x080
DMA_CCR7

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x084
DMA_CNDTR7

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x088
DMA_CPAR7 PA[31:0]

Reset value 0

Table 56. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0041 Rev 6 161/709

RM0041 Direct memory access controller (DMA)

161

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

0x08C
DMA_CMAR7 MA[31:0]

Reset value 0

0x090 Reserved

Table 56. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Analog-to-digital converter (ADC) RM0041

162/709 RM0041 Rev 6

10 Analog-to-digital converter (ADC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

10.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 18
multiplexed channels allowing it measure signals from sixteen external and two internal
sources. A/D conversion of the various channels can be performed in single, continuous,
scan or discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned
16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes
outside the user-defined high or low thresholds.

The ADC input clock is generated from the PCLK2 clock divided by a prescaler, refer to
Figure 8: STM32F100xx clock tree (low and medium-density devices) and Figure 9:
STM32F100xx clock tree (high-density devices).

10.2 ADC main features

• 12-bit resolution

• Interrupt generation at End of Conversion, End of Injected conversion and Analog
watchdog event

• Single and continuous conversion modes

• Scan mode for automatic conversion of channel 0 to channel ‘n’

• Self-calibration

• Data alignment with in-built data coherency

• Channel by channel programmable sampling time

• External trigger option for both regular and injected conversion

• Discontinuous mode

• ADC conversion time:

– STM32F100xx value line devices: 1.17 µs at 24 MHz

• ADC supply requirement: 2.4 V to 3.6 V

• ADC input range: VREF- ≤ VIN ≤ VREF+

• DMA request generation during regular channel conversion

The block diagram of the ADC is shown in Figure 24.

Note: VREF-, if available (depending on package), must be tied to VSSA.

RM0041 Rev 6 163/709

RM0041 Analog-to-digital converter (ADC)

189

10.3 ADC functional description

Figure 24 shows a single ADC block diagramand Table 57 gives the ADC pin description.

Figure 24. Single ADC block diagram

ADCx_IN0

ADCx_IN1

Analog to digital

converter
ADCx_IN15

Analog
MUX

ADCCLK

ADC Interrupt to NVIC

GPIO
Ports

Analog watchdog

A
dd

re
ss

/d
at

a
bu

s

Low Threshold (12 bits)

Compare Result

High Threshold (12 bits)

Flags enable bits

EOC

AWD
Analog watchdog event

VDDA
VSSA

VREF+
VREF-

Interrupt

TIM1_CH2
TIM1_CH3
TIM2_CH2

TIM3_CH4

From ADC prescaler

 (16 bits)

End of conversion

 channels
Injected

 channels

End of injected conversion
JEOC

EOCIE

AWDIE
JEOCIE

up to 4

up to 16

Regular data register

 (4 × 16 bits)
Injected data registers

Regular

Start trigger
(regular group)

EXTSEL[2:0] bits

EXTRIG

TIM1_CH1

TIM4_TRGO

EXTI_15

TIM1_CH4
TIM2_TRGO
TIM2_CH1

TIM3_TRGO

Start trigger
(injected group)

JEXTSEL[2:0] bits

TIM1_TRGO

TIM4_CH4

JEXTRIG

bit

bit

DMA request

Temp. sensor
VREFINT

EXTI_11

ai17313

Analog-to-digital converter (ADC) RM0041

164/709 RM0041 Rev 6

10.3.1 ADC on-off control

The ADC can be powered-on by setting the ADON bit in the ADC_CR2 register. When the
ADON bit is set for the first time, it wakes up the ADC from Power Down mode.

Conversion starts when ADON bit is set for a second time by software after ADC power-up
time (tSTAB).

The conversion can be stopped, and the ADC put in power down mode by resetting the
ADON bit. In this mode the ADC consumes almost no power (only a few µA).

10.3.2 ADC clock

The ADCCLK clock provided by the Clock Controller is synchronous with the PCLK2 (APB2
clock). The RCC controller has a dedicated programmable prescaler for the ADC clock,
refer to Section 6: Reset and clock control (RCC) for more details.

10.3.3 Channel selection

There are 16 multiplexed channels. It is possible to organize the conversions in two groups:
regular and injected. A group consists of a sequence of conversions which can be done on
any channel and in any order. For instance, it is possible to do the conversion in the
following order: Ch3, Ch8, Ch2, Ch2, Ch0, Ch2, Ch2, Ch15.

• The regular group is composed of up to 16 conversions. The regular channels and
their order in the conversion sequence must be selected in the ADC_SQRx registers.
The total number of conversions in the regular group must be written in the L[3:0] bits in
the ADC_SQR1 register.

• The injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADC_JSQR register.
The total number of conversions in the injected group must be written in the L[1:0] bits
in the ADC_JSQR register.

If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current
conversion is reset and a new start pulse is sent to the ADC to convert the new chosen
group.

Table 57. ADC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the ADC,
2.4 V ≤ VREF+ ≤ VDDA

VDDA
(1)

1. VDDA and VSSA have to be connected to VDD and VSS, respectively.

Input, analog supply
Analog power supply equal to VDD and
2.4 V ≤ VDDA ≤ 3.6 V

VREF-
Input, analog reference
negative

The lower/negative reference voltage for the ADC,
VREF- = VSSA

VSSA
(1) Input, analog supply

ground
Ground for analog power supply equal to VSS

ADCx_IN[15:0] Analog signals Up to 21 analog channels(2)

2. For full details about the ADC I/O pins, refer to the “Pinouts and pin descriptions” section of the
corresponding device datasheet.

RM0041 Rev 6 165/709

RM0041 Analog-to-digital converter (ADC)

189

Temperature sensor/VREFINT internal channels

The temperature sensor is connected to channel ADCx_IN16 and the internal reference
voltage VREFINT is connected to ADCx_IN17. These two internal channels can be selected
and converted as injected or regular channels.

Note: The sensor and VREFINT are only available on the master ADC1 peripheral.

10.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started either by
setting the ADON bit in the ADC_CR2 register (for a regular channel only) or by external
trigger (for a regular or injected channel), while the CONT bit is 0.

Once the conversion of the selected channel is complete:

• If a regular channel was converted:

– The converted data is stored in the 16-bit ADC_DR register

– The EOC (End Of Conversion) flag is set

– and an interrupt is generated if the EOCIE is set.

• If an injected channel was converted:

– The converted data is stored in the 16-bit ADC_DRJ1 register

– The JEOC (End Of Conversion Injected) flag is set

– and an interrupt is generated if the JEOCIE bit is set.

The ADC is then stopped.

10.3.5 Continuous conversion mode

In continuous conversion mode ADC starts another conversion as soon as it finishes one.
This mode is started either by external trigger or by setting the ADON bit in the ADC_CR2
register, while the CONT bit is 1.

After each conversion:

• If a regular channel was converted:

– The converted data is stored in the 16-bit ADC_DR register

– The EOC (End Of Conversion) flag is set

– An interrupt is generated if the EOCIE is set.

• If an injected channel was converted:

– The converted data is stored in the 16-bit ADC_DRJ1 register

– The JEOC (End Of Conversion Injected) flag is set

– An interrupt is generated if the JEOCIE bit is set.

10.3.6 Timing diagram

As shown in Figure 25, the ADC needs a stabilization time of tSTAB before it starts
converting accurately. After the start of ADC conversion and after 14 clock cycles, the EOC
flag is set and the 16-bit ADC Data register contains the result of the conversion.

Analog-to-digital converter (ADC) RM0041

166/709 RM0041 Rev 6

Figure 25. Timing diagram

10.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a low threshold or above a high threshold. These thresholds are programmed in the
12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be
enabled by using the AWDIE bit in the ADC_CR1 register.

The threshold value is independent of the alignment selected by the ALIGN bit in the
ADC_CR2 register. The comparison is done before the alignment (see Section 10.5).

The analog watchdog can be enabled on one or more channels by configuring the
ADC_CR1 register as shown in Table 58.

Figure 26. Analog watchdog guarded area

ADC_CLK

EOC

Next ADC conversionADC conversion

Conversion time
tSTAB

ADC

Software clears the EOC bit

(total conv. time)

Start 1st conversion Start next conversion

ai16047b

ADON

SWSTART/
JSWSTART

Table 58. Analog watchdog channel selection

Channels to be guarded by analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

None x 0 0

All injected channels 0 0 1

All regular channels 0 1 0

ai16048

Analog voltage
Higher threshold

Lower threshold
Guarded area

HTR

LTR

RM0041 Rev 6 167/709

RM0041 Analog-to-digital converter (ADC)

189

10.3.8 Scan mode

This mode is used to scan a group of analog channels.

Scan mode can be selected by setting the SCAN bit in the ADC_CR1 register. Once this bit
is set, ADC scans all the channels selected in the ADC_SQRx registers (for regular
channels) or in the ADC_JSQR (for injected channels). A single conversion is performed for
each channel of the group. After each end of conversion the next channel of the group is
converted automatically. If the CONT bit is set, conversion does not stop at the last selected
group channel but continues again from the first selected group channel.

When using scan mode, DMA bit must be set and the direct memory access controller is
used to transfer the converted data of regular group channels to SRAM after each update of
the ADC_DR register.

The injected channel converted data is always stored in the ADC_JDRx registers.

10.3.9 Injected channel management

Triggered injection

To use triggered injection, the JAUTO bit must be cleared and SCAN bit must be set in the
ADC_CR1 register.

1. Start conversion of a group of regular channels either by external trigger or by setting
the ADON bit in the ADC_CR2 register.

2. If an external injected trigger occurs during the regular group channel conversion, the
current conversion is reset and the injected channel sequence is converted in Scan
once mode.

3. Then, the regular group channel conversion is resumed from the last interrupted
regular conversion. If a regular event occurs during an injected conversion, it doesn’t
interrupt it but the regular sequence is executed at the end of the injected sequence.
Figure 27 shows the timing diagram.

Note: When using triggered injection, the interval between trigger events must be longer than the
injection sequence. For instance, if the sequence length is 28 ADC clock cycles (that is two
conversions with a 1.5 clock-period sampling time), the minimum interval between triggers
must be 29 ADC clock cycles.

All regular and injected channels 0 1 1

Single(1) injected channel 1 0 1

Single(1) regular channel 1 1 0

Single(1) regular or injected channel 1 1 1

1. Selected by AWDCH[4:0] bits

Table 58. Analog watchdog channel selection (continued)

Channels to be guarded by analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

Analog-to-digital converter (ADC) RM0041

168/709 RM0041 Rev 6

Auto-injection

If the JAUTO bit is set, then the injected group channels are automatically converted after
the regular group channels. This can be used to convert a sequence of up to 20 conversions
programmed in the ADC_SQRx and ADC_JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.

For ADC clock prescalers ranging from 4 to 8, a delay of 1 ADC clock period is automatically
inserted when switching from regular to injected sequence (respectively injected to regular).
When the ADC clock prescaler is set to 2, the delay is 2 ADC clock periods.

Note: It is not possible to use both auto-injected and discontinuous modes simultaneously.

Figure 27. Injected conversion latency

1. The maximum latency value can be found in the electrical characteristics of the STM32F101xx and
STM32F103xx datasheets.

10.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n <=8) which is a part of the sequence of
conversions selected in the ADC_SQRx registers. The value of n is specified by writing to
the DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[3:0] bits in the ADC_SQR1 register.

Example:

n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10
first trigger: sequence converted 0, 1, 2. An EOC event is generated at each

ADCCLK

Injection event

Reset ADC

SOC
max latency (1)

ai16049

RM0041 Rev 6 169/709

RM0041 Analog-to-digital converter (ADC)

189

conversion
second trigger: sequence converted 3, 6, 7. An EOC event is generated at each
conversion
third trigger: sequence converted 9, 10. An EOC event is generated at each conversion
fourth trigger: sequence converted 0, 1, 2. An EOC event is generated at each
conversion

Note: When a regular group is converted in discontinuous mode, no rollover will occur. When all
sub groups are converted, the next trigger starts conversion of the first sub-group.

In the example above, the fourth trigger reconverts the first sub-group channels 0, 1 and 2.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to
convert the sequence selected in the ADC_JSQR register, channel by channel, after an
external trigger event.

When an external trigger occurs, it starts the next channel conversions selected in the
ADC_JSQR registers until all the conversions in the sequence are done. The total sequence
length is defined by the JL[1:0] bits in the ADC_JSQR register.

Example:

n = 1, channels to be converted = 1, 2, 3
first trigger: channel 1 converted
second trigger: channel 2 converted
third trigger: channel 3 converted and EOC and JEOC events generated
fourth trigger: channel 1

Note: When all injected channels are converted, the next trigger starts the conversion of the first
injected channel. In the example above, the fourth trigger reconverts the first injected
channel 1.

It is not possible to use both auto-injected and discontinuous modes simultaneously.

The user must avoid setting discontinuous mode for both regular and injected groups
together. Discontinuous mode must be enabled only for one group conversion.

10.4 Calibration

The ADC has an built-in self calibration mode. Calibration significantly reduces accuracy
errors due to internal capacitor bank variations. During calibration, an error-correction code
(digital word) is calculated for each capacitor, and during all subsequent conversions, the
error contribution of each capacitor is removed using this code.

Calibration is started by setting the CAL bit in the ADC_CR2 register. Once calibration is
over, the CAL bit is reset by hardware and normal conversion can be performed. It is
recommended to calibrate the ADC once at power-on. The calibration codes are stored in
the ADC_DR as soon as the calibration phase ends.

Note: It is recommended to perform a calibration after each power-up.

Before starting a calibration, the ADC must have been in power-on state (ADON bit = ‘1’) for
at least two ADC clock cycles.

Analog-to-digital converter (ADC) RM0041

170/709 RM0041 Rev 6

Figure 28. Calibration timing diagram

10.5 Data alignment

ALIGN bit in the ADC_CR2 register selects the alignment of data stored after conversion.
Data can be left or right aligned as shown in Figure 29. and Figure 30.

The injected group channels converted data value is decreased by the user-defined offset
written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit is
the extended sign value.

For regular group channels no offset is subtracted so only twelve bits are significant.

Figure 29. Right alignment of data

Figure 30. Left alignment of data

CLK

tCAL

Calibration ongoing
CAL

ADC
Conversion

Normal ADC Conversion

Calibration Reset by Hardware

D7D8 D9 D6 D5 D4 D3 D2 D1 D0 D10 D11 SEXT SEXT SEXT SEXT

D7D8 D10 D11

 Injected group

 Regular group

0 0 0 0 D9 D6 D5 D4 D3 D2 D1 D0

ai16050

D4D5 D6 D3 D2 D1 D0 0 0 0 D7 D8D9 D10 D11 SEXT

 Injected group

 Regular group

ai16051

D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0

RM0041 Rev 6 171/709

RM0041 Analog-to-digital converter (ADC)

189

10.6 Channel-by-channel programmable sample time

ADC samples the input voltage for a number of ADC_CLK cycles which can be modified us-
ing the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be
sampled with a different sample time.

The total conversion time is calculated as follows:

Tconv = Sampling time + 12.5 cycles

Example:

With an ADCCLK = 12 MHz and a sampling time of 1.5 cycles:

Tconv = 1.5 + 12.5 = 14 cycles = 1.17 µs

10.7 Conversion on external trigger

Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXT-
TRIG control bit is set then external events are able to trigger a conversion. The EXT-
SEL[2:0] and JEXTSEL[2:0] control bits allow the application to select decide which out of 8
possible events can trigger conversion for the regular and injected groups.

Note: When an external trigger is selected for ADC regular or injected conversion, only the rising
edge of the signal can start the conversion.

Table 59. External trigger for regular channels for ADC1

Source Type EXTSEL[2:0]

TIM1_CC1 event

Internal signal from on-chip timers

000

TIM1_CC2 event 001

TIM1_CC3 event 010

TIM2_CC2 event 011

TIM3_TRGO event 100

TIM4_CC4 event 101

EXTI line 11 External pin 110

SWSTART Software control bit 111

Table 60. External trigger for injected channels for ADC1

Source Connection type JEXTSEL[2:0]

TIM1_TRGO event

Internal signal from on-chip timers

000

TIM1_CC4 event 001

TIM2_TRGO event 010

TIM2_CC1 event 011

TIM3_CC4 event 100

TIM4_TRGO event 101

EXTI line 15 External pin 110

JSWSTART Software control bit 111

Analog-to-digital converter (ADC) RM0041

172/709 RM0041 Rev 6

The software source trigger events can be generated by setting a bit in a register
(SWSTART and JSWSTART in ADC_CR2).

A regular group conversion can be interrupted by an injected trigger.

10.8 DMA request

Since converted regular channels value are stored in a unique data register, it is necessary
to use DMA for conversion of more than one regular channel. This avoids the loss of data
already stored in the ADC_DR register.

Only the end of conversion of a regular channel generates a DMA request, which allows the
transfer of its converted data from the ADC_DR register to the destination location selected
by the user.

10.9 Temperature sensor

The temperature sensor can be used to measure the junction temperature (TJ) of the
device.

The temperature sensor is internally connected to the ADCx_IN16 input channel which is
used to convert the sensor output voltage into a digital value. The recommended sampling
time for the temperature sensor is 17.1 µs.

The block diagram of the temperature sensor is shown in Figure 31.

When not in use, this sensor can be put in power down mode.

Note: The TSVREFE bit must be set to enable both internal channels: ADCx_IN16 (temperature
sensor) and ADCx_IN17 (VREFINT) conversion.

The temperature sensor output voltage changes linearly with temperature. The offset of this
line varies from chip to chip due to process variations (up to 45 °C from one chip to another).

The internal temperature sensor is more suited to applications that detect temperature
variations instead of absolute temperatures. If accurate temperature readings are needed,
an external temperature sensor part should be used.

RM0041 Rev 6 173/709

RM0041 Analog-to-digital converter (ADC)

189

Figure 31. Temperature sensor and VREFINT channel block diagram

MS35936V2

Temperature
sensor

VSENSE

TSVREFE control bit

ADC1

A
dd

re
ss

/d
at

a
bu

s

VREFINT

ADC1_IN16

Internal
power block ADC1_IN17

Converted data

Analog-to-digital converter (ADC) RM0041

174/709 RM0041 Rev 6

Reading the temperature

To use the sensor:

1. Select the ADCx_IN16 input channel.

2. Select a sample time of 17.1 µs

3. Set the TSVREFE bit in the ADC control register 2 (ADC_CR2) to wake up the
temperature sensor from power down mode.

4. Start the ADC conversion by setting the ADON bit (or by external trigger).

5. Read the resulting VSENSE data in the ADC data register

6. Obtain the temperature using the following formula:

Temperature (in °C) = {(V25 - VSENSE) / Avg_Slope} + 25.

Where,

V25 = VSENSE value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. VSENSE (given in
mV/° C or µV/ °C).

Refer to the Electrical characteristics section for the actual values of V25 and
Avg_Slope.

Note: The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADON and TSVREFE bits should be set at the same time.

10.10 ADC interrupts

An interrupt can be produced on end of conversion for regular and injected groups and
when the analog watchdog status bit is set. Separate interrupt enable bits are available for
flexibility.

Two other flags are present in the ADC_SR register, but there is no interrupt associated with
them:

• JSTRT (Start of conversion for injected group channels)

• STRT (Start of conversion for regular group channels)

Table 61. ADC interrupts

Interrupt event Event flag Enable Control bit

End of conversion regular group EOC EOCIE

End of conversion injected group JEOC JEOCIE

Analog watchdog status bit is set AWD AWDIE

RM0041 Rev 6 175/709

RM0041 Analog-to-digital converter (ADC)

189

10.11 ADC registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

10.11.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
STRT JSTRT JEOC EOC AWD

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:5 Reserved, must be kept at reset value.

Bit 4 STRT: Regular channel Start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.
0: No regular channel conversion started
1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel Start flag

This bit is set by hardware when injected channel group conversion starts. It is cleared by
software.
0: No injected group conversion started
1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of all injected group channel conversion. It is cleared
by software.
0: Conversion is not complete
1: Conversion complete

Bit 1 EOC: End of conversion

This bit is set by hardware at the end of a group channel conversion (regular or injected). It is
cleared by software or by reading the ADC_DR.
0: Conversion is not complete
1: Conversion complete

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in
the ADC_LTR and ADC_HTR registers. It is cleared by software.
0: No Analog watchdog event occurred
1: Analog watchdog event occurred

Analog-to-digital converter (ADC) RM0041

176/709 RM0041 Rev 6

10.11.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

AWDE
N

JAWDE
N Reserved

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISCNUM[2:0]
JDISCE

N
DISC
EN

JAUTO
AWD
SGL

SCAN
JEOC

IE
AWDIE EOCIE AWDCH[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set/reset by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set/reset by software.
0: Analog watchdog disabled on injected channels
1: Analog watchdog enabled on injected channels

Bits 21:16 Reserved, must be kept at reset value.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted
in discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
.......
111: 8 channels

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit set and cleared by software to enable/disable discontinuous mode on injected group
channels
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit set and cleared by software to enable/disable Discontinuous mode on regular
channels.
0: Discontinuous mode on regular channels disabled
1: Discontinuous mode on regular channels enabled

Bit 10 JAUTO: Automatic Injected Group conversion

This bit set and cleared by software to enable/disable automatic injected group conversion
after regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

RM0041 Rev 6 177/709

RM0041 Analog-to-digital converter (ADC)

189

10.11.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit set and cleared by software to enable/disable the analog watchdog on the channel
identified by the AWDCH[4:0] bits.
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable Scan mode. In Scan mode, the
inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.
0: Scan mode disabled
1: Scan mode enabled

Note: An EOC or JEOC interrupt is generated only on the end of conversion of the last
channel if the corresponding EOCIE or JEOCIE bit is set

Bit 7 JEOCIE: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for
injected channels.
0: JEOC interrupt disabled
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the End of Conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by
the Analog watchdog.
00000: ADC analog Channel0
00001: ADC analog Channel1
....
01111: ADC analog Channel15
10000: ADC analog Channel16
10001: ADC analog Channel17
Other values: reserved.

ADC1 analog Channel16 and Channel17 are internally connected to the temperature
sensor and to VREFINT, respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

TSVRE
FE

SWSTA
RT

JSWST
ART

EXTTR
IG

EXTSEL[2:0] Res.

rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0041

178/709 RM0041 Rev 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JEXTT
RIG

JEXTSEL[2:0] ALIGN Reserved DMA
Reserved

RST
CAL

CAL CONT ADON

rw rw rw rw rw Res. rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and VREFINT
channel.
0: Temperature sensor and VREFINT channel disabled
1: Temperature sensor and VREFINT channel enabled

Bit 22 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as
conversion starts. It starts a conversion of a group of regular channels if SWSTART is
selected as trigger event by the EXTSEL[2:0] bits.
0: Reset state
1: Starts conversion of regular channels

Bit 21 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by software or by hardware as soon as the conversion
starts. It starts a conversion of a group of injected channels (if JSWSTART is selected as
trigger event by the JEXTSEL[2:0] bits.
0: Reset state
1: Starts conversion of injected channels

Bit 20 EXTTRIG: External trigger conversion mode for regular channels

This bit is set and cleared by software to enable/disable the external trigger used to start
conversion of a regular channel group.
0: Conversion on external event disabled
1: Conversion on external event enabled

Bits 19:17 EXTSEL[2:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:
000: Timer 1 CC1 event
001: Timer 1 CC2 event
010: Timer 1 CC3 event
011: Timer 2 CC2 event
100: Timer 3 TRGO event
101: Timer 4 CC4 event
110: EXTI line 11
111: SWSTART

Bit 16 Reserved, must be kept at reset value.

Bit 15 JEXTTRIG: External trigger conversion mode for injected channels

This bit is set and cleared by software to enable/disable the external trigger used to start
conversion of an injected channel group.
0: Conversion on external event disabled
1: Conversion on external event enabled

RM0041 Rev 6 179/709

RM0041 Analog-to-digital converter (ADC)

189

Bits 14:12 JEXTSEL[2:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected
group:
000: Timer 1 TRGO event
001: Timer 1 CC4 event
010: Timer 2 TRGO event
011: Timer 2 CC1 event
100: Timer 3 CC4 event
101: Timer 4 TRGO event
110: EXTI line15
111: JSWSTART

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 29.and Figure 30.
0: Right Alignment
1: Left Alignment

Bits 10:9 Reserved, must be kept at reset value.

Bit 8 DMA: Direct memory access mode

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.
0: DMA mode disabled
1: DMA mode enabled

Bits 7:4 Reserved, must be kept at reset value.

Bit 3 RSTCAL: Reset calibration

This bit is set by software and cleared by hardware. It is cleared after the calibration registers
are initialized.
0: Calibration register initialized.
1: Initialize calibration register.

Note: If RSTCAL is set when conversion is ongoing, additional cycles are required to clear the
calibration registers.

Bit 2 CAL: A/D Calibration

This bit is set by software to start the calibration. It is reset by hardware after calibration is
complete.
0: Calibration completed
1: Enable calibration

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If set conversion takes place continuously till this bit is
reset.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D converter ON / OFF

This bit is set and cleared by software. If this bit holds a value of zero and a 1 is written to it
then it wakes up the ADC from Power Down state.
Conversion starts when this bit holds a value of 1 and a 1 is written to it. The application
should allow a delay of tSTAB between power up and start of conversion. Refer to Figure 25.
0: Disable ADC conversion/calibration and go to power down mode.
1: Enable ADC and to start conversion

Note: If any other bit in this register apart from ADON is changed at the same time, then
conversion is not triggered. This is to prevent triggering an erroneous conversion.

Analog-to-digital converter (ADC) RM0041

180/709 RM0041 Rev 6

10.11.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP17[2:0] SMP16[2:0] SMP15[2:1]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP
15_0

SMP14[2:0] SMP13[2:0] SMP12[2:0] SMP11[2:0] SMP10[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel.
During sample cycles channel selection bits must remain unchanged.
000: 1.5 cycles
001: 7.5 cycles
010: 13.5 cycles
011: 28.5 cycles
100: 41.5 cycles
101: 55.5 cycles
110: 71.5 cycles
111: 239.5 cycles

ADC1 analog Channel16 and Channel 17 are internally connected to the temperature
sensor and to VREFINT, respectively.

RM0041 Rev 6 181/709

RM0041 Analog-to-digital converter (ADC)

189

10.11.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

10.11.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)

Address offset: 0x14-0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved SMP9[2:0] SMP8[2:0] SMP7[2:0] SMP6[2:0] SMP5[2:1]

Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP
5_0

SMP4[2:0] SMP3[2:0] SMP2[2:0] SMP1[2:0] SMP0[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel.
During sample cycles channel selection bits must remain unchanged.
000: 1.5 cycles
001: 7.5 cycles
010: 13.5 cycles
011: 28.5 cycles
100: 41.5 cycles
101: 55.5 cycles
110: 71.5 cycles
111: 239.5 cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
JOFFSETx[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw
converted data when converting injected channels. The conversion result can be read from
in the ADC_JDRx registers.

Analog-to-digital converter (ADC) RM0041

182/709 RM0041 Rev 6

10.11.7 ADC watchdog high threshold register (ADC_HTR)

Address offset: 0x24

Reset value: 0x0000 0FFF

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

10.11.8 ADC watchdog low threshold register (ADC_LTR)

Address offset: 0x28

Reset value: 0x0000 0000

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 HT[11:0]: Analog watchdog high threshold

These bits are written by software to define the high threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 LT[11:0]: Analog watchdog low threshold

These bits are written by software to define the low threshold for the analog watchdog.

RM0041 Rev 6 183/709

RM0041 Analog-to-digital converter (ADC)

189

10.11.9 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
L[3:0] SQ16[4:1]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ16_0 SQ15[4:0] SQ14[4:0] SQ13[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
0000: 1 conversion
0001: 2 conversions
.....
1111: 16 conversions

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 16th in
the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

Analog-to-digital converter (ADC) RM0041

184/709 RM0041 Rev 6

10.11.10 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x30

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ12[4:0] SQ11[4:0] SQ10[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ10_
0

SQ9[4:0] SQ8[4:0] SQ7[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 12th in the
sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

RM0041 Rev 6 185/709

RM0041 Analog-to-digital converter (ADC)

189

10.11.11 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ6[4:0] SQ5[4:0] SQ4[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ4_0 SQ3[4:0] SQ2[4:0] SQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 6th in the
sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: fourth conversion in regular sequence

Bits 14:10 SQ3[4:0]: third conversion in regular sequence

Bits 9:5 SQ2[4:0]: second conversion in regular sequence

Bits 4:0 SQ1[4:0]: first conversion in regular sequence

Analog-to-digital converter (ADC) RM0041

186/709 RM0041 Rev 6

10.11.12 ADC injected sequence register (ADC_JSQR)

Address offset: 0x38

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
JL[1:0] JSQ4[4:1]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSQ4_0 JSQ3[4:0] JSQ2[4:0] JSQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept at reset value.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions

Bits 19:15 JSQ4[4:0]: fourth conversion in injected sequence (when JL[1:0] = 3)(1)

These bits are written by software with the channel number (0..17) assigned as the fourth in
the sequence to be converted.

Note: Unlike a regular conversion sequence, if JL[1:0] length is less than four, the channels
are converted in a sequence starting from (4-JL). Example: ADC_JSQR[21:0] = 10
00011 00011 00111 00010 means that a scan conversion will convert the following
channel sequence: 7, 3, 3. (not 2, 7, 3)

Bits 14:10 JSQ3[4:0]: third conversion in injected sequence (when JL[1:0] = 3)

Bits 9:5 JSQ2[4:0]: second conversion in injected sequence (when JL[1:0] = 3)

Bits 4:0 JSQ1[4:0]: first conversion in injected sequence (when JL[1:0] = 3)

1. When JL=3 (4 injected conversions in the sequencer), the ADC converts the channels in this order:
JSQ1[4:0] >> JSQ2[4:0] >> JSQ3[4:0] >> JSQ4[4:0]
When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in this order:
JSQ2[4:0] >> JSQ3[4:0] >> JSQ4[4:0]
When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in this order:
JSQ3[4:0] >> JSQ4[4:0]
When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel

RM0041 Rev 6 187/709

RM0041 Analog-to-digital converter (ADC)

189

10.11.13 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x3C - 0x48

Reset value: 0x0000 0000

10.11.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JDATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 JDATA[15:0]: Injected data

These bits are read only. They contain the conversion result from injected channel x. The
data is left or right-aligned as shown in Figure 29 and Figure 30.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 DATA[15:0]: Regular data

These bits are read only. They contain the conversion result from the regular channels. The
data is left or right-aligned as shown in Figure 29 and Figure 30.

Analog-to-digital converter (ADC) RM0041

188/709 RM0041 Rev 6

10.11.15 ADC register map

The following table summarizes the ADC registers.

Table 62. ADC register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
ADC_SR

Reserved

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0

0x04
ADC_CR1

Reserved

A
W

D
E

N

JA
W

D
E

N

Reserved

DISC
NUM
[2:0]

JD
IS

C
E

N

D
IS

C
E

N

JA
U

T
O

A
W

D
 S

G
L

S
C

A
N

JE
O

C
 I

E

A
W

D
IE

E
O

C
IE

AWDCH[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
ADC_CR2

Reserved

T
S

V
R

E
F

E

S
W

S
TA

R
T

JS
W

S
TA

R

E
X

T
T

R
IG EXTSEL

[2:0]
R

e
se

rv
e

d

JE
X

T
T

R
IG JEXTSE

L
[2:0] A

L
IG

N

R
e

se
rv

e
d

D
M

A

Reserved

R
S

T
C

A
L

C
A

L

C
O

N
T

A
D

O
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
ADC_SMPR1 Sample time bits SMPx_x

Reset value 0

0x10
ADC_SMPR2 Sample time bits SMPx_x

Reset value 0

0x14
ADC_JOFR1

Reserved
JOFFSET1[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
ADC_JOFR2

Reserved
JOFFSET2[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
ADC_JOFR3

Reserved
JOFFSET3[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x20
ADC_JOFR4

Reserved
JOFFSET4[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
ADC_HTR

Reserved
HT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x28
ADC_LTR

Reserved
LT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
ADC_SQR1

Reserved
L[3:0]

SQ16[4:0] 16th
conversion in

regular
sequence bits

SQ15[4:0] 15th
conversion in

regular
sequence bits

SQ14[4:0] 14th
conversion in

regular
sequence bits

SQ13[4:0] 13th
conversion in

regular
sequence bits

Reset value 0

RM0041 Rev 6 189/709

RM0041 Analog-to-digital converter (ADC)

189

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

0x30
ADC_SQR2

R
e

se
rv

e
d

SQ12[4:0] 12th
conversion in

regular
sequence bits

SQ11[4:0] 11th
conversion in

regular
sequence bits

SQ10[4:0] 10th
conversion in

regular
sequence bits

SQ9[4:0] 9th
conversion in

regular
sequence bits

SQ8[4:0] 8th
conversion in

regular
sequence bits

SQ7[4:0] 7th
conversion in

regular
sequence bits

Reset value 0

0x34
ADC_SQR3

R
e

se
rv

e
d

SQ6[4:0] 6th
conversion in

regular
sequence bits

SQ5[4:0] 5th
conversion in

regular
sequence bits

SQ4[4:0] fourth
conversion in

regular
sequence bits

SQ3[4:0] third
conversion in

regular
sequence bits

SQ2[4:0] second
conversion in

regular
sequence bits

SQ1[4:0] first
conversion in

regular
sequence bits

Reset value 0

0x38
ADC_JSQR

Reserved
JL[1:

0]

JSQ4[4:0]
fourthconversion

in injected
sequence bits

JSQ3[4:0] third
conversion in

injected
sequence bits

JSQ2[4:0]
second

conversion in
injected

sequence bits

JSQ1[4:0] first
conversion in

injected
sequence bits

Reset value 0

0x3C
ADC_JDR1

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
ADC_JDR2

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
ADC_JDR3

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
ADC_JDR4

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
ADC_DR

Reserved
Regular DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 62. ADC register map and reset values (continued)

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Digital-to-analog converter (DAC) RM0041

190/709 RM0041 Rev 6

11 Digital-to-analog converter (DAC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

11.1 DAC introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each
with its own converter. In dual DAC channel mode, conversions could be done
independently or simultaneously when both channels are grouped together for synchronous
update operations. An input reference pin, VREF+ (shared with ADC) is available for better
resolution.

11.2 DAC main features

• Two DAC converters: one output channel each

• Left or right data alignment in 12-bit mode

• Synchronized update capability

• Noise-wave generation

• Triangular-wave generation

• Dual DAC channel for independent or simultaneous conversions

• DMA capability for each channel

• DMA underrun error detection

• External triggers for conversion

• Input voltage reference, VREF+

Figure 32 shows the block diagram of a DAC channel and Table 63 gives the pin
description.

RM0041 Rev 6 191/709

RM0041 Digital-to-analog converter (DAC)

211

Figure 32. DAC channel block diagram

Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is
automatically connected to the analog converter output (DAC_OUTx). In order to avoid
parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

Table 63. DAC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the DAC,
2.4 V ≤ VREF+ ≤ VDDA

VDDA Input, analog supply Analog power supply

VSSA Input, analog supply ground Ground for analog power supply

DAC_OUTx Analog output signal DAC channelx analog output

VDDA

VSSA

VREF+

DAC_OUTx

Control logicx

DHRx

12-bit

12-bit

LFSRx tr ianglex

DM A requestx

TSELx[2:0] bits

TIM7_TRGO
TIM3_TRGO
TIM2_TRGO
TIM4_TRGO

TIM6_TRGO

EXTI_9

DMAENx

TENx

MAMPx[3:0] bits

WAVENx[1:0] bits

SWTRIGx

DORx

Digital-to-analog
converterx

12-bit

DAC control register

ai18304

Tr
ig

ge
r

se
le

ct
or

 x

TIM5_TRGO
or TIM15_TRGO

Digital-to-analog converter (DAC) RM0041

192/709 RM0041 Rev 6

11.3 DAC functional description

11.3.1 DAC channel enable

Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR
register. The DAC channel is then enabled after a startup time tWAKEUP.

Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

11.3.2 DAC output buffer enable

The DAC integrates two output buffers that can be used to reduce the output impedance,
and to drive external loads directly without having to add an external operational amplifier.
Each DAC channel output buffer can be enabled and disabled using the corresponding
BOFFx bit in the DAC_CR register.

11.3.3 DAC data format

Depending on the selected configuration mode, the data have to be written into the specified
register as described below:

• Single DAC channelx, there are three possibilities:

– 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0]
bits (stored into the DHRx[11:4] bits)

– 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4]
bits (stored into the DHRx[11:0] bits)

– 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0]
bits (stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memory-
mapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

RM0041 Rev 6 193/709

RM0041 Digital-to-analog converter (DAC)

211

Figure 33. Data registers in single DAC channel mode

• Dual DAC channels, there are three possibilities:

– 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD
[7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded
into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits)

– 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be
loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits)

– 12-bit right alignment: data for DAC channel1 to be loaded into the
DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC
channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the
DHR2[11:0] bits)

Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted
and stored into DHR1 and DHR2 (data holding registers, which are internal non-memory-
mapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR2 registers, respectively, either automatically, by software trigger or by an external
event trigger.

Figure 34. Data registers in dual DAC channel mode

11.3.4 DAC conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12LD).

Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later.

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14710b

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709b

Digital-to-analog converter (DAC) RM0041

194/709 RM0041 Rev 6

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.

Figure 35. Timing diagram for conversion with trigger disabled TEN = 0

11.3.5 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

11.3.6 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which out of eight
possible events trigger conversion as shown in Table 64.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

APB1_CLK

0x1AC

0x1AC

tSETTLING

DHR

DOR
Output voltage
available on DAC_OUT pin

ai14711c

DACoutput VREF
DOR
4096
--------------×=

Table 64. External triggers

Source Type TSEL[2:0]

Timer 6 TRGO event

Internal signal from on-chip
timers

000

Timer 3 TRGO event 001

Timer 7 TRGO event 010

Timer 5 or Timer 15 TRGO
event

011

Timer 2 TRGO event 100

Timer 4 TRGO event 101

EXTI line9 External pin 110

SWTRIG Software control bit 111

RM0041 Rev 6 195/709

RM0041 Digital-to-analog converter (DAC)

211

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

Note: TSELx[2:0] bit cannot be changed when the ENx bit is set.

When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DORx register takes only one APB1 clock cycle.

For High-density value line devices, the TIM15 TRGO event is selected as DAC Trigger 3
only if the MISC_REMAP bit in the AFIO_MAPR2 register is set and DAC Trigger 3 is
connected to TIM5 TRGO when the MISC_REMAP bit in the AFIO_MAPR2 register is reset.
On low- and medium -density devices the TIM15 TRGO event is always selected as DAC
Trigger 3. For more details refer to the Section 7.3: Alternate function I/O and debug
configuration (AFIO) on page 117.

11.3.7 DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
into the DAC_DORx register.
In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, the user should set only the corresponding DMAENx bit. In this
way, the application can manage both DAC channels in dual mode by using one DMA
request and a unique DMA channel.

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgement for the first external trigger is received (first request), then no new
request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register
is set, reporting the error condition. DMA data transfers are then disabled and no further
DMA request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be
resumed by enabling both DMA data transfer and conversion trigger.

For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit
in the DAC_CR register is enabled.

11.3.8 Noise generation

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after
each trigger event, following a specific calculation algorithm.

Digital-to-analog converter (DAC) RM0041

196/709 RM0041 Rev 6

Figure 36. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

Figure 37. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

11.3.9 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB1 clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

11 10 9 8 7 6 5 4 3 2 1 0

12

NOR

X12
X0XX4X6

XOR

ai14713c

APB1_CLK

0x00

0xAAA

DHR

DOR

ai14714b

0xD55

SWTRIG

RM0041 Rev 6 197/709

RM0041 Digital-to-analog converter (DAC)

211

It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.

Figure 38. DAC triangle wave generation

Figure 39. DAC conversion (SW trigger enabled) with triangle wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

11.4 Dual DAC channel conversion

To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven possible conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

MAMPx[3:0] max amplitude
+ DAC_DHRx base value

DAC_DHRx base value

Inc
rem

en
tat

ion

ai14715c

Decrementation
0

APB1_CLK

0x00

0xAAA

DHR

DOR

ai14714b

0xD55

SWTRIG

Digital-to-analog converter (DAC) RM0041

198/709 RM0041 Rev 6

11.4.1 Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB1 clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB1 clock cycles later).

11.4.2 Independent trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). Then the LFSR2 counter is updated.

11.4.3 Independent trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB1 clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the LFSR2 counter is updated.

RM0041 Rev 6 199/709

RM0041 Digital-to-analog converter (DAC)

211

11.4.4 Independent trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same
triangle amplitude, is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then
updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same
triangle amplitude, is added to the DHR2 register and the sum is transferred into
DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then
updated.

11.4.5 Independent trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle
amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is
transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle
counter is then updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle
amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is
transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle
counter is then updated.

11.4.6 Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

• Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are
transferred into DAC_DOR1 and DAC_DOR2, respectively.

Digital-to-analog converter (DAC) RM0041

200/709 RM0041 Rev 6

11.4.7 Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB1 clock cycles).

11.4.8 Simultaneous trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

• Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1
clock cycles later). The LFSR2 counter is then updated.

11.4.9 Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The LFSR1 counter is then updated.
At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). The LFSR2 counter is then updated.

RM0041 Rev 6 201/709

RM0041 Digital-to-analog converter (DAC)

211

11.4.10 Simultaneous trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with the same triangle
amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three
APB1 clock cycles later). The DAC channel1 triangle counter is then updated.
At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is
added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The DAC channel2 triangle counter is then updated.

11.4.11 Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is
updated.
At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

Digital-to-analog converter (DAC) RM0041

202/709 RM0041 Rev 6

11.5 DAC registers

Refer to Section 1.1: List of abbreviations for registers for registers for a list of abbreviations
used in register descriptions.

The peripheral registers have to be accessed by words (32 bits).

11.5.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMAU
DRIE2

DMA
EN2

MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 BOFF2 EN2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

DMAU
DRIE1

DMA
EN1

MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable

This bit is set and cleared by software.
0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled

Bit 28 DMAEN2: DAC channel2 DMA enable

This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled

Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable

These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

RM0041 Rev 6 203/709

RM0041 Digital-to-analog converter (DAC)

211

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection

These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 7 TRGO event
011: Timer 5 or timer 15 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).
For high-density value line devices, the TIM15 TRGO event is selected as DAC Trigger
3 only if the MISC_REMAP bit in the AFIO_MAPR2 register is set and DAC Trigger 3 is
connected to TIM5 TRGO when the MISC_REMAP bit in the AFIO_MAPR2 register is
reset. On low- and medium -density devices the TIM15 TRGO event is always selected
as DAC Trigger 3. For more details refer to the AFIO section.

Bit 18 TEN2: DAC channel2 trigger enable

This bit is set and cleared by software to enable/disable DAC channel2 trigger
0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR2 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR2 register takes only one APB1 clock cycle.

Bit 17 BOFF2: DAC channel2 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel2 output buffer.
0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Bit 16 EN2: DAC channel2 enable

This bit is set and cleared by software to enable/disable DAC channel2.
0: DAC channel2 disabled
1: DAC channel2 enabled

Bits 15:14 Reserved, must be kept at reset value.

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable

This bit is set and cleared by software.
0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.
0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Digital-to-analog converter (DAC) RM0041

204/709 RM0041 Rev 6

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.
000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 7 TRGO event
011: Timer 5 or Timer 15 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bit 2 TEN1: DAC channel1 trigger enable

This bit is set and cleared by software to enable/disable DAC channel1 trigger.
0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel1 output buffer.
0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable

This bit is set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled

RM0041 Rev 6 205/709

RM0041 Digital-to-analog converter (DAC)

211

11.5.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04
Reset value: 0x0000 0000

11.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
SWTRIG2 SWTRIG1

w w

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 SWTRIG2: DAC channel2 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR2 register.

Bit 0 SWTRIG1: DAC channel1 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Digital-to-analog converter (DAC) RM0041

206/709 RM0041 Rev 6

11.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

11.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

RM0041 Rev 6 207/709

RM0041 Digital-to-analog converter (DAC)

211

11.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

11.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2)

Address offset: 0x18

Reset value: 0x0000 0000

11.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

Digital-to-analog converter (DAC) RM0041

208/709 RM0041 Rev 6

11.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000

11.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 19:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

RM0041 Rev 6 209/709

RM0041 Digital-to-analog converter (DAC)

211

11.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD)

Address offset: 0x28

Reset value: 0x0000 0000

11.5.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

11.5.13 DAC channel2 data output register (DAC_DOR2)

Address offset: 0x30
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[7:0] DACC1DHR[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bit 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read-only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output

These bits are read-only, they contain data output for DAC channel2.

Digital-to-analog converter (DAC) RM0041

210/709 RM0041 Rev 6

11.5.14 DAC status register (DAC_SR)

Address offset: 0x34

Reset value: 0x0000 0000

11.5.15 DAC register map

Table 65 summarizes the DAC registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DMAUDR2

Reserved
rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DMAUDR1

Reserved
rc_w1

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DMAUDR2: DAC channel2 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)

Bits 28:14 Reserved, must be kept at reset value.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved, must be kept at reset value.

Table 65. DAC register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 DAC_CR

R
e

se
rv

e
d

D
M

A
U

D
R

IE
2

D
M

A
E

N
2

MAMP2[3:0]
WAVE
2[2:0]

TSEL2[2:0]

T
E

N
2

B
O

F
F

2

E
N

2

R
e

se
rv

e
d

D
M

A
U

D
R

IE
1

D
M

A
E

N
1

MAMP1[3:0]
WAVE
1[2:0]

TSEL1[2
:0]

T
E

N
1

B
O

F
F

1

E
N

1

0x04
DAC_

SWTRIGR
Reserved

S
W

T
R

IG
2

S
W

T
R

IG
1

0x08
DAC_

DHR12R1
Reserved DACC1DHR[11:0]

0x0C
DAC_

DHR12L1
Reserved DACC1DHR[11:0] Reserved

0x10
DAC_

DHR8R1
Reserved DACC1DHR[7:0]

0x14
DAC_

DHR12R2
Reserved DACC2DHR[11:0]

0x18
DAC_

DHR12L2
Reserved DACC2DHR[11:0] Reserved

RM0041 Rev 6 211/709

RM0041 Digital-to-analog converter (DAC)

211

Refer to Section 2.3: Memory map for the register boundary addresses.

0x1C
DAC_

DHR8R2
Reserved DACC2DHR[7:0]

0x20
DAC_

DHR12RD
Reserved DACC2DHR[11:0] Reserved DACC1DHR[11:0]

0x24
DAC_

DHR12LD
DACC2DHR[11:0] Reserved DACC1DHR[11:0] Reserved

0x28
DAC_

DHR8RD
Reserved DACC2DHR[7:0] DACC1DHR[7:0]

0x2C
DAC_
DOR1

Reserved DACC1DOR[11:0]

0x30
DAC_
DOR2

Reserved DACC2DOR[11:0]

0x34 DAC_SR

R
es

er
ve

d

D
M

A
U

D
R

2

Reserved

D
M

A
U

D
R

1

Reserved

Table 65. DAC register map (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Advanced-control timer (TIM1) RM0041

212/709 RM0041 Rev 6

12 Advanced-control timer (TIM1)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

12.1 TIM1 introduction

The advanced-control timer (TIM1) consists of a 16-bit auto-reload counter driven by a
programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control (TIM1) and general-purpose (TIMx) timers are completely
independent, and do not share any resources. They can be synchronized together as
described in Section 12.3.20.

RM0041 Rev 6 213/709

RM0041 Advanced-control timer (TIM1)

283

12.2 TIM1 main features

TIM1 timer features include:

• 16-bit up, down, up/down auto-reload counter.

• 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge and Center-aligned mode)

– One-pulse mode output

• Complementary outputs with programmable dead-time

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together.

• Repetition counter to update the timer registers only after a given number of cycles of
the counter.

• Break input to put the timer’s output signals in reset state or in a known state.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

Advanced-control timer (TIM1) RM0041

214/709 RM0041 Rev 6

Figure 40. Advanced-control timer block diagram

MS39906V3

Interrupt & DMA output

Event

Polarity selection

Input filter &
Edge detector

Input filter &
Edge detector

Input filter &
Edge detector

Input filter &
Edge detector

TRC

TRC

TRC

TRC

TI4FP4

TI4FP3

TI3FP4

TI3FP3

Prescaler

IC3

IC4

IC2

IC1

Prescaler

Prescaler

Prescaler

TI2FP2

TI2FP1

TI1FP1

TI1FP2

TI1

TI2

TI3

TI4

BRK

Clock failure event from clock controller
CSS (Clock Security System)

IC1PS

IC2PS

IC3PS

IC4PS

BI

Capture/Compare
4 Register

U

Capture/Compare
3 Register

U

U

Capture/Compare
2 Register

Capture/Compare
1 Register

U

CC1I

CC2I

CC3I

CC4I

CC1I

CC2I

CC3I

CC4I

OC1REF

OC2REF

OC3REF

OC4REF

DTG

DTG

DTG

OC4
O

C
3N

OC3

OC2N

O
C

2
O

C
1N

O
C

1

DTG[7:0] registers
CNT

(counter)
PSC

(prescaler)

CK_CNTCK_PSC

Repetition counter

REP Register

UI

Polarity selection,
Edge detector and Prescaler

Input filter

Trigger
controller

Slave mode
controller

Encoder
interface

Reset,
Enable,
Up/Down,
Count

To other timers
To DAC and ADC

TRGO

TRGI

TGI

Internal clock (CK_INT)

ETRF
ETRP

ETR

CK_TIM18 from RCC

TI1FP1

TI2FP2

TI
M

x_
ET

R
TI

M
x_

C
H

1
TI

M
x_

C
H

2
TI

M
x_

C
H

3
TI

M
x_

C
H

4
TI

M
x_

B
K

IN

TI
M

x_
C

H
1

TI
M

x_
C

H
1N

TI
M

x_
C

H
3

TI
M

x_
C

H
3N

TI
M

x_
C

H
2

TI
M

x_
C

H
4

TI
M

x_
C

H
2N

U

U

Output
control

AutoReload
RegisterU

ITR0

ITR1

ITR2

ITR3

TIF_ED

Output
control

Output
control

Output
control

TRC

RM0041 Rev 6 215/709

RM0041 Advanced-control timer (TIM1)

283

12.3 TIM1 functional description

12.3.1 Time-base unit

The main block of the programmable advanced-control timer is a 16-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

• Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 41 and Figure 42 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Advanced-control timer (TIM1) RM0041

216/709 RM0041 Rev 6

Figure 41. Counter timing diagram with prescaler division change from 1 to 2

Figure 42. Counter timing diagram with prescaler division change from 1 to 4

CK_PSC

00

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V2

0

30

0 1 2 3 0 1 2 3

MS31077V2

CK_PSC

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

RM0041 Rev 6 217/709

RM0041 Advanced-control timer (TIM1)

283

12.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is
repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR+1). Else the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register,

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 43. Counter timing diagram, internal clock divided by 1

00 02 03 04 05 06 0733 34 35 3631

MS31078V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0132

Advanced-control timer (TIM1) RM0041

218/709 RM0041 Rev 6

Figure 44. Counter timing diagram, internal clock divided by 2

Figure 45. Counter timing diagram, internal clock divided by 4

Figure 46. Counter timing diagram, internal clock divided by N

MS31079V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0034 0035 0036 0000 0001 0002 0003

MS31080V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0000 00010035 0036

MS31081V3

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

001F 20

RM0041 Rev 6 219/709

RM0041 Advanced-control timer (TIM1)

283

Figure 47. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 48. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

FF 36

MS31082V3

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CEN

Auto-reload preload register

Write a new value in TIMx_ARR

MS31083V2

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Auto-reload shadow
register F5 36

Advanced-control timer (TIM1) RM0041

220/709 RM0041 Rev 6

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting is
repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR+1). Else the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

RM0041 Rev 6 221/709

RM0041 Advanced-control timer (TIM1)

283

Figure 49. Counter timing diagram, internal clock divided by 1

Figure 50. Counter timing diagram, internal clock divided by 2

36 34 33 32 31 30 2F04 03 02 01 0005

MS31184V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow
(cnt_udf)

Update interrupt flag
 (UIF)

35

MS31185V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002 0001 0000 0036 0035 0034 0033

Advanced-control timer (TIM1) RM0041

222/709 RM0041 Rev 6

Figure 51. Counter timing diagram, internal clock divided by 4

Figure 52. Counter timing diagram, internal clock divided by N

MS40510V1

0036 00350001 0000

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag (UIF)

CNT_EN

001F20

MS31187V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

36

RM0041 Rev 6 223/709

RM0041 Advanced-control timer (TIM1)

283

Figure 53. Counter timing diagram, update event when repetition counter is not used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

FF 36

MS31188V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002030405 30 2F3233343536 3101

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Advanced-control timer (TIM1) RM0041

224/709 RM0041 Rev 6

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 54. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 12.4: TIM1 registers).

Figure 55. Counter timing diagram, internal clock divided by 2

MS31189V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CEN

Counter underflow

00020304 05 0601 02 03 0401 05 0304

MS31190V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

CNT_EN

Counter underflow

0003 0002 0001 0000 0001 0002 0003

RM0041 Rev 6 225/709

RM0041 Advanced-control timer (TIM1)

283

Figure 56. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 57. Counter timing diagram, internal clock divided by N

0034 0035

MS31191V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CNT_EN

0036 0035

MS31192V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

Counter underflow

001F20 01

Advanced-control timer (TIM1) RM0041

226/709 RM0041 Rev 6

Figure 58. Counter timing diagram, update event with ARPE=1 (counter underflow)

Figure 59. Counter timing diagram, Update event with ARPE=1 (counter overflow)

12.3.3 Repetition counter

Section 12.3.1: Time-base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
counter has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx
capture/compare registers in compare mode) every N+1 counter overflows or underflows,
where N is the value in the TIMx_RCR repetition counter register.

MS31193V3

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CEN

Auto-reload preload register

Write a new value in TIMx_ARR

Auto-reload active register

FD 36

00 02 03 04 05 06 070106 05 04 03 02 01

FD 36

MS31194V2

FD 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

36 34 33 32 31 30 2FF8 F9 FA FB FCF7 35

CEN

Auto-reload preload register

Write a new value in TIMx_ARR

Auto-reload active register FD 36

RM0041 Rev 6 227/709

RM0041 Advanced-control timer (TIM1)

283

The repetition counter is decremented:

• At each counter overflow in upcounting mode,

• At each counter underflow in downcounting mode,

• At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetition to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2xTck, due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined by
the TIMx_RCR register value (refer to Figure 60). When the update event is generated by
software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and the
repetition counter is reloaded with the content of the TIMx_RCR register.

In center-aligned mode, for odd values of RCR, the update event occurs either on the
overflow or on the underflow depending on when the RCR register was written and when
the counter was started. If the RCR was written before starting the counter, the UEV occurs
on the overflow. If the RCR was written after starting the counter, the UEV occurs on the
underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or
underflow event depending on when RCR was written.

Figure 60. Update rate examples depending on mode and TIMx_RCR register settings

MSv31195V1

UEV

UEV

UEV

UEV

UEV

Counter-aligned mode Edge-aligned mode
Upcounting Downcounting

(by SW)(by SW)(by SW)

TIMx_RCR = 3
and

re-synchronization

TIMx_RCR = 3

TIMx_RCR = 2

TIMx_RCR = 1

TIMx_RCR = 0

Counter
TIMx_CNT

UEV Update event: Preload registers transferred to active registers and update interrupt generated
Update Event if the repetition counter underflow occurs when the counter is equal to the auto-reload value.

Advanced-control timer (TIM1) RM0041

228/709 RM0041 Rev 6

12.3.4 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin

• External clock mode2: external trigger input ETR

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, the user can configure Timer 1 to act as a prescaler for Timer 2. Refer to
Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 61 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 61. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

RM0041 Rev 6 229/709

RM0041 Advanced-control timer (TIM1)

283

Figure 62. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so the user does not need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2 0
1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI2F_Rising

TI2F_Falling
110

0xx

100

101

MS31196V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

ETRF 111

External clock
mode 2

ETRF

ECE

Advanced-control timer (TIM1) RM0041

230/709 RM0041 Rev 6

Figure 63. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 64 gives an overview of the external trigger input block.

Figure 64. External trigger input block

Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

MS31087V2

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

MS33116V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

External clock
mode 2

ETRF

ECE

0

1

TIMx_SMCR

ETP

ETR pin

ETR
Divider

/1, /2, /4, /8 Filter
downcounterf

ETRP

TIMx_SMCR

ETPS[1:0]

TIMx_SMCR

ETF[3:0]

DTS

RM0041 Rev 6 231/709

RM0041 Advanced-control timer (TIM1)

283

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 65. Control circuit in external clock mode 2

12.3.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 66 to Figure 69 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

MS33111V2

34 35 36

fCK_INT

CNT_EN

ETR

ETRP

ETRF

Counter clock =
CK_INT =CK_PSC

Counter register

Advanced-control timer (TIM1) RM0041

232/709 RM0041 Rev 6

Figure 66. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform that is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 67. Capture/compare channel 1 main circuit

0

1
Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED
To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1TI2FP1

TRC

(from slave mode
controller)

10
IC1PS

0

1

MS33115V1

TI1

TIMx_CCER

CC1P/CC1NP

Filter
downcounter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI1F_Rising

TI1F_Falling

TIMx_CCMR1

TIMx_CCER

TI2F_Rising
(from channel 2)

TI2F_Falling
(from channel 2)

TI1F
f

CC1E

DTS

MS31089V3

CC1E

Capture/compare shadow register

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]
CC1S[1]

Capture

Input
mode

S

R

Read CCR1H

Read CCR1L
read_in_progress

capture_transfer CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L
write_in_progress

Output
mode

UEV

OC1PE

(from time
base unit)

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

RM0041 Rev 6 233/709

RM0041 Advanced-control timer (TIM1)

283

Figure 68. Output stage of capture/compare channel (channel 1 to 3)

Figure 69. Output stage of capture/compare channel (channel 4)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

MS35909V1

Output
mode

controller

CNT>CCR1

CNT=CCR1

TIM1_CCMR1

OC1M[3:0]

OC1REF

OC1CE

Dead-time
generator

OC1_DT

OC1N_DT

DTG[7:0]

TIM1_BDTR

‘0’

‘0’

CC1E

TIM1_CCER

CC1NE

0

1

CC1P

TIM1_CCER

0

1

CC1NP

TIM1_CCER

OC1

Output
enable
circuit

OC1N

CC1E TIM1_CCERCC1NE

OSSI

TIM1_BDTR

MOE OSSR

0x
10
11

11
01
x0

Output
selector

OCxREF

OC1REFC

To the master mode
controller

Output
enable
circuit

OC5REF

(1)

ETRF

MS37370V1

Output
mode

controller

TIM1_CCMR2
OC1M[3:0]

OC4REF

0

1

CC4P
TIM1_CCER

OC4

To the master
mode controller Output

enable
circuit

ETR

CNT>CCR4

CNT>CCR4

TIM1_CCER

TIM1_BDTR

TIM1_CR2

OSSIMOE

CC4E

OIS4

Advanced-control timer (TIM1) RM0041

234/709 RM0041 Rev 6

12.3.6 Input capture mode

In Input capture mode, the Capture/Compare registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to ‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at must five
internal clock cycles. We must program a filter duration longer than these five clock
cycles. We can validate a transition on TI1 when 8 consecutive samples with the new
level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in
the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

RM0041 Rev 6 235/709

RM0041 Advanced-control timer (TIM1)

283

12.3.7 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, user can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to '1' (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 70. PWM input mode timing

12.3.8 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is

Advanced-control timer (TIM1) RM0041

236/709 RM0041 Rev 6

forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.

12.3.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One Pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = 0 to disable preload register

– Write CCxP = 0 to select active high polarity

– Write CCxE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 71.

RM0041 Rev 6 237/709

RM0041 Advanced-control timer (TIM1)

283

Figure 71. Output compare mode, toggle on OC1.

12.3.10 PWM mode

Pulse Width Modulation mode allows generating a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user must initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

• Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to
Upcounting mode.

In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the

MS31092V2

OC1REF= OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

Advanced-control timer (TIM1) RM0041

238/709 RM0041 Rev 6

compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 72 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.

Figure 72. Edge-aligned PWM waveforms (ARR=8)

• Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to
Downcounting mode

In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the

MS31093V1

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0
‘0’

RM0041 Rev 6 239/709

RM0041 Advanced-control timer (TIM1)

283

TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Center-aligned mode (up/down counting).

Figure 73 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 73. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx = 7
OCxREF

CMS=10 or 11

CCxIF

CCRx = 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx > 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx = 0
OCxREF

CMS=01
CMS=10
CMS=11

'0'

ai14681b

Advanced-control timer (TIM1) RM0041

240/709 RM0041 Rev 6

in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if the user writes a value in the counter greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it will continue to count up.

– The direction is updated if the user writes 0 or write the TIMx_ARR value in the
counter but no Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

12.3.11 Complementary outputs and dead-time insertion

The advanced-control timers (TIM1) can output two complementary signals and manage the
switching-off and the switching-on instants of the outputs.

This time is generally known as dead-time and it has to be adjust it depending on the
devices connected to the outputs and their characteristics (intrinsic delays of level-shifters,
delays due to power switches...)

User can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 68
for more details. In particular, the dead-time is activated when switching to the IDLE state
(MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to control the
dead-time generation for all channels. From a reference waveform OCxREF, it generates 2
outputs OCx and OCxN. If OCx and OCxN are active high:

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

• The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)

RM0041 Rev 6 241/709

RM0041 Advanced-control timer (TIM1)

283

Figure 74. Complementary output with dead-time insertion.

Figure 75. Dead-time waveforms with delay greater than the negative pulse.

Figure 76. Dead-time waveforms with delay greater than the positive pulse.

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 12.4.18: TIM1 break and dead-time
register (TIMx_BDTR) for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows the user to send a specific waveform (such as PWM or static active level) on
one output while the complementary remains at its inactive level. Other possibilities are to

delay

delay

OCxREF

OCx

OCxN

MS31095V1

MS31096V1

delay

OCxREF

OCx

OCxN

MS31097V1

delay

OCxREF

OCx

OCxN

Advanced-control timer (TIM1) RM0041

242/709 RM0041 Rev 6

have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.

12.3.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register,
OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 68 for more details.

The break source can be either the break input pin or a clock failure event, generated by the
Clock Security System (CSS), from the Reset Clock Controller. For further information on
the Clock Security System, refer to Section 6.2.7: Clock security system (CSS).

When exiting from reset, the break circuit is disabled and the MOE bit is low. User can
enable the break function by setting the BKE bit in the TIMx_BDTR register. The break input
polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can
be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB
clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1
APB clock period to correctly read back the bit after the write operation.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if MOE is written to 1 whereas it was low, a delay
(dummy instruction) must be inserted before reading it correctly. This is because the user
writes an asynchronous signal, but reads a synchronous signal.

When a break occurs (selected level on the break input):

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

• Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

• When complementary outputs are used:

– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their

RM0041 Rev 6 243/709

RM0041 Advanced-control timer (TIM1)

283

active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs
remain or become high as soon as one of the CCxE or CCxNE bits is high.

• The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be
generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if
the BDE bit in the TIMx_DIER register is set.

• If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until it is written to ‘1’ again. In this case, it can be used for
security and the break input can be connected to an alarm from power drivers, thermal
sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot
be cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR register.

There are two solutions to generate a break:

• By using the BRK input which has a programmable polarity and an enable bit BKE in
the TIMx_BDTR register

• By software through the BG bit of the TIMx_EGR register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows freezing the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). The user can choose from
three levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to
Section 12.4.18: TIM1 break and dead-time register (TIMx_BDTR). The LOCK bits can be
written only once after an MCU reset.

Advanced-control timer (TIM1) RM0041

244/709 RM0041 Rev 6

Figure 77 shows an example of behavior of the outputs in response to a break.

Figure 77. Output behavior in response to a break.

delay delay delay

delay delay delay

delay

delay

OCxREF

OCx
(OCxN not implemented, CCxP=0, OISx=1)

OCx
(OCxN not implemented, CCxP=0, OISx=0)

OCx
(OCxN not implemented, CCxP=1, OISx=1)

OCx
(OCxN not implemented, CCxP=1, OISx=0)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN=1)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN=1)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN=1)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN=0)

OCx

OCxN
(CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=OISxN=0 or OISx=OISxN=1)

MS31098V1

BREAK (MOE)

RM0041 Rev 6 245/709

RM0041 Advanced-control timer (TIM1)

283

12.3.13 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for
current handling. In this case, the ETR must be configured as follow:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured according to the user needs.

Figure 78 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.

Figure 78. Clearing TIMx OCxREF

MSv35889V1

(CCRx)

Counter (CNT)

ETRF

OCxREF (OCxCE = ‘0’)

OCxREF (OCxCE = ‘1’)

ETRF becomes high ETRF still high

Advanced-control timer (TIM1) RM0041

246/709 RM0041 Rev 6

12.3.14 6-step PWM generation

When complementary outputs are used on a channel, preload bits are available on the
OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the
COM commutation event. The user can thus program in advance the configuration for the
next step and change the configuration of all the channels at the same time. COM can be
generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on
TRGI rising edge).

A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request
(if the COMDE bit is set in the TIMx_DIER register).

Figure 79 describes the behavior of the OCx and OCxN outputs when a COM event occurs,
in 3 different examples of programmed configurations.

Figure 79. 6-step generation, COM example (OSSR=1)

RM0041 Rev 6 247/709

RM0041 Advanced-control timer (TIM1)

283

12.3.15 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

• In downcounting: CNT > CCRx

Figure 80. Example of one pulse mode.

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=’0’ in the TIMx_CCER register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ‘0’ to ‘1’ when a
compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the

MS31099V2

TI2

OC1REF

C
ou

nt
er

t0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY tPULSE

Advanced-control timer (TIM1) RM0041

248/709 RM0041 Rev 6

auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the compare value must be written in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

The user only wants one pulse (Single mode), so '1’ must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the
TIMx_CCMRx register must be set. Then OCxRef (and OCx) are forced in response to the
stimulus, without taking in account the comparison. Its new level is the same as if a compare
match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2
mode.

12.3.16 Encoder interface mode

To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and
SMS=’011’ if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, the user can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 66. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So user must
configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler,
repetition counter, trigger output features continue to work as normal. Encoder mode and
External clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.

RM0041 Rev 6 249/709

RM0041 Advanced-control timer (TIM1)

283

Table 66 summarizes the possible combinations, assuming TI1 and TI2 do not switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 81 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1).

• CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2).

• CC1P=’0’, and IC1F = ‘0000’ (TIMx_CCER register, TI1FP1 non-inverted,
TI1FP1=TI1).

• CC2P=’0’, and IC2F = ‘0000’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2=
TI2).

• SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges).

• CEN=’1’ (TIMx_CR1 register, Counter enabled).

Table 66. Counting direction versus encoder signals

Active
edge

Level on opposite signal
(TI1FP1 for TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

Advanced-control timer (TIM1) RM0041

250/709 RM0041 Rev 6

Figure 81. Example of counter operation in encoder interface mode.

Figure 82 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=’1’).

Figure 82. Example of encoder interface mode with TI1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position.The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical zero
can be used for this purpose. Depending on the time between two events, the counter can
also be read at regular times. This can be done by latching the counter value into a third
input capture register if available (then the capture signal must be periodic and can be
generated by another timer). when available, it is also possible to read its value through a
DMA request generated by a real-time clock.

TI1

backwardjitter jitter

up down up

TI2

Counter

forward forward

MS33107V1

TI1

backwardjitter jitter

updown

TI2

Counter

forward forward

MS33108V1

down

RM0041 Rev 6 251/709

RM0041 Advanced-control timer (TIM1)

283

12.3.17 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture. An example of this feature used to interface Hall sensors is given in
Section 12.3.18.

12.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers (TIM1) to generate PWM signals to drive the
motor and another timer TIMx (TIM2, TIM3, TIM4 or TIM5) referred to as “interfacing timer”
in Figure 83. The “interfacing timer” captures the 3 timer input pins (TIMx_CH1, TIMx_CH2,
and TIMx_CH3) connected through a XOR to the TI1 input channel (selected by setting the
TI1S bit in the TIMx_CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,
each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a
time base triggered by any change on the Hall inputs.

On the “interfacing timer”, capture/compare channel 1 is configured in capture mode,
capture signal is TRC (see Figure 66). The captured value, which corresponds to the time
elapsed between 2 changes on the inputs, gives information about motor speed.

The “interfacing timer” can be used in output mode to generate a pulse which changes the
configuration of the channels of the advanced-control timer (TIM1) (by triggering a COM
event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the
interfacing timer channel must be programmed so that a positive pulse is generated after a
programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-
control timer (TIM1) through the TRGO output.

Example: the user wants to change the PWM configuration of the advanced-control timer
TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to
one of the TIMx timers.

• Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the
TIMx_CR2 register to ‘1’,

• Program the time base: write the TIMx_ARR to the max value (the counter must be
cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
than the time between 2 changes on the sensors,

• Program channel 1 in capture mode (TRC selected): write the CC1S bits in the
TIMx_CCMR1 register to ‘11’. The user can also program the digital filter if needed,

• Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to ‘111’
and the CC2S bits to ‘00’ in the TIMx_CCMR1 register,

• Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to ‘101’,

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the
timer is programmed to generate PWM signals, the capture/compare control signals are
preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the
trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are
written after a COM event for the next step (this can be done in an interrupt subroutine
generated by the rising edge of OC2REF).

Advanced-control timer (TIM1) RM0041

252/709 RM0041 Rev 6

Figure 83 describes this example.

Figure 83. Example of Hall sensor interface

counter (CNT)

TRGO=OC2REF

(CCR2)

OC1

OC1N

COM

Write CCxE, CCxNE

TIH1

TIH2

TIH3

CCR1

OC2

OC2N

OC3

OC3N

C7A3 C7A8 C794 C7A5 C7AB C796

and OCxM for next step

In
te

rf
ac

in
g

tim
er

ad
va

nc
ed

-c
on

tr
ol

 ti
m

er
s

(T
IM

1)

ai17336

RM0041 Rev 6 253/709

RM0041 Advanced-control timer (TIM1)

283

12.3.19 TIMx and external trigger synchronization

The TIMx timer can be synchronized with an external trigger in several modes: Reset mode,
Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 84. Control circuit in reset mode

MS31401V3

UG

TI1

00

Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 0332 33 34 35 363130

TIF

Advanced-control timer (TIM1) RM0041

254/709 RM0041 Rev 6

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. The
CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register.
Write CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level
only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 85. Control circuit in gated mode

MS31402V3

TI1

CNT_EN

Write TIF=0

Counter clock = ck_cnt = ck_psc

Counter register

TIF

37 3832 33 34 35 363130

RM0041 Rev 6 255/709

RM0041 Advanced-control timer (TIM1)

283

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC2S bits
are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1
register. Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low
level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 86. Control circuit in trigger mode

Slave mode: external clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode or
trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01 in TIMx_CCMR1 register to select only the input capture source

MS31403V2

TI2

CNT_EN

Counter clock = ck_cnt = ck_psc

Counter register

TIF

37 3834 35 36

Advanced-control timer (TIM1) RM0041

256/709 RM0041 Rev 6

– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

Figure 87. Control circuit in external clock mode 2 + trigger mode

12.3.20 Timer synchronization

The TIM timers are linked together internally for timer synchronization or chaining. Refer to
Section 13.3.15: Timer synchronization for details.

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

12.3.21 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 25.15.2: Debug support for timers,
watchdog and I2C.

For safety purposes, when the counter is stopped (DBG_TIMx_STOP = 1 in
DBGMCU_APBx_FZ register), the outputs are disabled (as if the MOE bit was reset). The
outputs can either be forced to an inactive state (OSSI bit = 1), or have their control taken
over by the GPIO controller (OSSI bit = 0) to force them to Hi-Z.

MS33110V1

34 35 36

TIF

Counter register

Counter clock = CK_CNT = CK_PSC

ETR

CEN/CNT_EN

TI1

RM0041 Rev 6 257/709

RM0041 Advanced-control timer (TIM1)

283

12.4 TIM1 registers

Refer to Section 2.2 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

12.4.1 TIM1 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
(ETR, TIx),
00: tDTS=tCK_INT
01: tDTS=2*tCK_INT
10: tDTS=4*tCK_INT
11: Reserved, do not program this value

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

Advanced-control timer (TIM1) RM0041

258/709 RM0041 Rev 6

12.4.2 TIM1 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S MMS[2:0] CCDS CCUS

Res.
CCPC

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 OIS4: Output Idle state 4 (OC4 output)

refer to OIS1 bit

Bit 13 OIS3N: Output Idle state 3 (OC3N output)

refer to OIS1N bit

Bit 12 OIS3: Output Idle state 3 (OC3 output)

refer to OIS1 bit

Bit 11 OIS2N: Output Idle state 2 (OC2N output)

refer to OIS1N bit

Bit 10 OIS2: Output Idle state 2 (OC2 output)

refer to OIS1 bit

RM0041 Rev 6 259/709

RM0041 Advanced-control timer (TIM1)

283

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Advanced-control timer (TIM1) RM0041

260/709 RM0041 Rev 6

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).

Note: This bit acts only on channels that have a complementary output.

RM0041 Rev 6 261/709

RM0041 Advanced-control timer (TIM1)

283

12.4.3 TIM1 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw Res. rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Advanced-control timer (TIM1) RM0041

262/709 RM0041 Rev 6

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See Table 67 for more details on ITRx meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

RM0041 Rev 6 263/709

RM0041 Advanced-control timer (TIM1)

283

12.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control register
description.
000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.

Table 67. TIMx Internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM1
TIM5_TRGO or
TIM15_TRGO(1)

1. TIM5 only in high density value line devices. Selection of TIM5 or TIM15 depends on the MISC_REMAP bit
in the AFIO_MAPR2 register.

TIM2_TRGO TIM3_TRGO TIM4_TRGO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE COMDE CC4DE CC3DE CC2DE CC1DE UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bit 13 COMDE: COM DMA request enable

0: COM DMA request disabled
1: COM DMA request enabled

Advanced-control timer (TIM1) RM0041

264/709 RM0041 Rev 6

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled
1: CC3 DMA request enabled

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled
1: Break interrupt enabled

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled
1: COM interrupt enabled

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

RM0041 Rev 6 265/709

RM0041 Advanced-control timer (TIM1)

283

12.4.5 TIM1 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4OF CC3OF CC2OF CC1OF Res. BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/Compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode.It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE,
CCxNE, OCxM - have been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

Advanced-control timer (TIM1) RM0041

266/709 RM0041 Rev 6

12.4.6 TIM1 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/down-counting modes) or
underflow (in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value (update if repetition counter
= 0) and if the UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to Section 12.4.3: TIM1 slave mode
control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BG TG COMG CC4G CC3G CC2G CC1G UG

w w w w w w w w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

RM0041 Rev 6 267/709

RM0041 Advanced-control timer (TIM1)

283

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware
0: No action
1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels having a complementary output.

Bit 4 CC4G: Capture/Compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/Compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/Compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

Advanced-control timer (TIM1) RM0041

268/709 RM0041 Rev 6

12.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

Output compare mode:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2
CE

OC2M[2:0]
OC2
PE

OC2
FE CC2S[1:0]

OC1
CE

OC1M[2:0]
OC1
PE

OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

RM0041 Rev 6 269/709

RM0041 Advanced-control timer (TIM1)

283

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK
bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output).

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is
set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

Advanced-control timer (TIM1) RM0041

270/709 RM0041 Rev 6

Input capture mode

12.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N consecutive events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

RM0041 Rev 6 271/709

RM0041 Advanced-control timer (TIM1)

283

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4
CE

OC4M[2:0]
OC4
PE

OC4
FE CC4S[1:0]

OC3
CE.

OC3M[2:0]
OC3
PE

OC3
FE CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

Advanced-control timer (TIM1) RM0041

272/709 RM0041 Rev 6

Input capture mode

12.4.9 TIM1 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP
Res.

CC4P CC4E CC3NP CC3NE CC3P CC3E CC2NP CC2NE CC2P CC2E CC1NP CC1NE CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 complementary output polarity

refer to CC1NP description

Bit 14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output polarity

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 complementary output polarity

refer to CC1NP description

Bit 10 CC3NE: Capture/Compare 3 complementary output enable

refer to CC1NE description

Bit 9 CC3P: Capture/Compare 3 output polarity

refer to CC1P description

RM0041 Rev 6 273/709

RM0041 Advanced-control timer (TIM1)

283

Bit 8 CC3E: Capture/Compare 3 output enable

refer to CC1E description

Bit 7 CC2NP: Capture/Compare 2 complementary output polarity

refer to CC1NP description

Bit 6 CC2NE: Capture/Compare 2 complementary output enable

refer to CC1NE description

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output polarity

0: OC1N active high.
1: OC1N active low.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output).

Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
This bit selects whether IC1 or IC1 is used for trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1. When used as external trigger, IC1
is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When used as external trigger, IC1 is
inverted.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Advanced-control timer (TIM1) RM0041

274/709 RM0041 Rev 6

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIOand AFIO registers.

12.4.10 TIM1 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

12.4.11 TIM1 prescaler (TIMx_PSC)

Address offset: 0x28

Table 68. Output control bits for complementary OCx and OCxN channels with
break feature

Control bits Output states(1)

MOE
bit

OSSI
bit

OSSR
bit

CCxE
bit

CCxNE
bit

OCx output state OCxN output state

1 X

0 0 0
Output Disabled (not driven by
the timer), OCx=0, OCx_EN=0

Output Disabled (not driven by the
timer), OCxN=0, OCxN_EN=0

0 0 1
Output Disabled (not driven by
the timer), OCx=0, OCx_EN=0

OCxREF + Polarity OCxN=OCxREF
xor CCxNP, OCxN_EN=1

0 1 0
OCxREF + Polarity
OCx=OCxREF xor CCxP,
OCx_EN=1

Output Disabled (not driven by the
timer)
OCxN=0, OCxN_EN=0

0 1 1
OCREF + Polarity + dead-time
OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time
OCxN_EN=1

1 0 0
Output Disabled (not driven by
the timer)
OCx=CCxP, OCx_EN=0

Output Disabled (not driven by the
timer)
OCxN=CCxNP, OCxN_EN=0

1 0 1
Off-State (output enabled with
inactive state)
OCx=CCxP, OCx_EN=1

OCxREF + Polarity
OCxN=OCxREF xor CCxNP,
OCxN_EN=1

1 1 0
OCxREF + Polarity
OCx=OCxREF xor CCxP,
OCx_EN=1

Off-State (output enabled with
inactive state)
OCxN=CCxNP, OCxN_EN=1

1 1 1
OCREF + Polarity + dead-time
OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time
OCxN_EN=1

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept
cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

RM0041 Rev 6 275/709

RM0041 Advanced-control timer (TIM1)

283

Reset value: 0x0000

12.4.12 TIM1 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.
Refer to Section 12.3.1: Time-base unit for more details about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

Advanced-control timer (TIM1) RM0041

276/709 RM0041 Rev 6

12.4.13 TIM1 repetition counter register (TIMx_RCR)

Address offset: 0x30

Reset value: 0x0000

12.4.14 TIM1 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
REP[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.
Each time the REP_CNT related downcounter reaches zero, an update event is generated
and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at
the repetition update event U_RC, any write to the TIMx_RCR register is not taken in
account until the next repetition update event.
It means in PWM mode (REP+1) corresponds to:

– the number of PWM periods in edge-aligned mode

– the number of half PWM period in center-aligned mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.
If channel CC1 is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The
TIMx_CCR1 register is read-only and cannot be programmed.

RM0041 Rev 6 277/709

RM0041 Advanced-control timer (TIM1)

283

12.4.15 TIM1 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

12.4.16 TIM1 capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2). The
TIMx_CCR2 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.
If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3). The
TIMx_CCR3 register is read-only and cannot be programmed.

Advanced-control timer (TIM1) RM0041

278/709 RM0041 Rev 6

12.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

12.4.18 TIM1 break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on
the LOCK configuration, it can be necessary to configure all of them during the first write
access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR4[15:0]: Capture/Compare value

If channel CC4 is configured as output:
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register
(bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If channel CC4 is configured as input:
CCR4 is the counter value transferred by the last input capture 4 event (IC4). The
TIMx_CCR3 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set
by software or automatically depending on the AOE bit. It is acting only on the channels
which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state.
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register).
See OC/OCN enable description for more details (Section 12.4.9: TIM1 capture/compare
enable register (TIMx_CCER)).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is
not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

RM0041 Rev 6 279/709

RM0041 Advanced-control timer (TIM1)

283

Bit 13 BKP: Break polarity

0: Break input BRK is active low
1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

0: Break inputs (BRK and CSS clock failure event) disabled
1; Break inputs (BRK and CSS clock failure event) enabled

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented
in the timer.
See OC/OCN enable description for more details (Section 12.4.9: TIM1 capture/compare
enable register (TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.
See OC/OCN enable description for more details (Section 12.4.9: TIM1 capture/compare
enable register (TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or
CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected.
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.

Advanced-control timer (TIM1) RM0041

280/709 RM0041 Rev 6

12.4.19 TIM1 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 us to 31750 ns by 250 ns steps,
32 us to 63us by 1 us steps,
64 us to 126 us by 2 us steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer detects a burst transfer
when a read or a write access to the TIMx_DMAR register address is performed).
the TIMx_DMAR address)
00000: 1 transfer
00001: 2 transfers
00010: 3 transfers
...
10001: 18 transfers

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In
this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

RM0041 Rev 6 281/709

RM0041 Advanced-control timer (TIM1)

283

12.4.20 TIM1 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000 0000

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DMAB[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 DMAB[31:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

Advanced-control timer (TIM1) RM0041

282/709 RM0041 Rev 6

12.4.21 TIM1 register map

TIM1 registers are mapped as 16-bit addressable registers as described in the table below:

Table 69. TIM1 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved O
IS

4

O
IS

3
N

O
IS

3

O
IS

2
N

O
IS

2

O
IS

1
N

O
IS

1

T
I1

S MMS[2:0]

C
C

D
S

C
C

U
S

R
e

se
rv

e
d

C
C

P
C

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E

ETP
S

[1:0]
ETF[3:0]

M
S

M TS[2:0]

R
es

er
ve

d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

B
IE

T
IE

C
O

M
IE

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

4
O

F

C
C

3
O

F

C
C

2
O

F

C
C

1
O

F

R
e

se
rv

e
d

B
IF

T
IF

C
O

M
IF

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved B
G

T
G

C
O

M
G

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output compare

mode Reserved

O
C

2
C

E

OC2M
[2:0]

O
C

2P
E

O
C

2
F

E CC2S
[1:0]

O
C

1
C

E
OC1M
[2:0]

O
C

1P
E

O
C

1
F

E CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output compare

mode Reserved

O
C

4
C

E

OC4M
[2:0]

O
C

4P
E

O
C

4
F

E CC4S
[1:0]

O
C

3
C

E

OC3M
[2:0]

O
C

3P
E

O
C

3
F

E CC3
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0]

IC3F[3:0]
IC3
PSC
[1:0]

CC3
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved

C
C

4
N

P

R
e

se
rv

e
d

C
C

4
P

C
C

4
E

C
C

3
N

P

C
C

3
N

E

C
C

3
P

C
C

3
E

C
C

2
N

P

C
C

2
N

E

C
C

2
P

C
C

2
E

C
C

1
N

P

C
C

1
N

E

C
C

1
P

C
C

1
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0041 Rev 6 283/709

RM0041 Advanced-control timer (TIM1)

283

Refer to for the register boundary addresses.

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x30
TIMx_RCR

Reserved
REP[7:0]

Reset value 0 0 0 0 0 0 0 0

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

Reserved
CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

Reserved
CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
TIMx_BDTR

Reserved M
O

E

A
O

E

B
K

P

B
K

E

O
S

S
R

O
S

S
I LOCK

[1:0]
DT[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
TIMx_DCR

Reserved
DBL[4:0]

Reserved
DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR DMAB[31:0]

Reset value 0

Table 69. TIM1 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM2 to TIM5) RM0041

284/709 RM0041 Rev 6

13 General-purpose timers (TIM2 to TIM5)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

13.1 TIM2 to TIM5 introduction

The general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 13.3.15.

RM0041 Rev 6 285/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.2 TIM2 to TIM5 main features

General-purpose TIMx timer features include:

• 16-bit up, down, up/down auto-reload counter.

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge- and Center-aligned modes)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

General-purpose timers (TIM2 to TIM5) RM0041

286/709 RM0041 Rev 6

Figure 88. General-purpose timer block diagram

13.3 TIM2 to TIM5 functional description

13.3.1 Time-base unit

The main block of the programmable timer is a 16-bit counter with its related auto-reload
register. The counter can count up but also down or both up and down. The counter clock
can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC):

• Auto-Reload register (TIMx_ARR)

Autoreload register

Capture/compare 1 register

Capture/compare 2 register

U

U

U

CC1I

CC2I

Trigger
controller

Stop, clear or up/down

TI1FP1

TI2FP2

ITR0

ITR1

ITR2

ITR3
TRGI

Encoder
Interface

Capture/compare 3 register

U
CC3I

output
control

OC1

TRGO

OC1REF

OC2REF

OC3REF

U

UI

Reset, enable, up/down, count

Capture/compare 4 register

U
CC4I

OC4REF
Prescaler

Prescaler

IC4PS

IC3PS

IC1

IC2
Prescaler

PrescalerInput filter &
edge detector

IC2PS

IC1PSTI1FP1

OC2

OC3

OC4

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

TGI

TRC

TRC

IC3

IC4

ITR

TRC

TI1F_ED

Input filter &
edge detector

Input filter &
edge detector

Input filter &
edge detector

CC1I

CC2I

CC3I

CC4I

TI1FP2

TI2FP1
TI2FP2

TI3FP3

TRC

TRC

TI3FP4

TI4FP3
TI4FP4

TI4

TI3

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

to other timers

TIMxCLK from RCC

Prescaler counter
+/-CK_PSC PSC CNTCK_CNT

controller
mode
Slave

Internal clock (CK_INT)

ETR
Input filterPolarity selection & edge

detector & prescaler

ETRP
ETRF

TIMx_ETR

ETRF

to DAC/ADC

output
control

output
control

output
control

OCREF_CLR

ETRF

ai17188

RM0041 Rev 6 287/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 89 and Figure 90 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Figure 89. Counter timing diagram with prescaler division change from 1 to 2

MS35833V1

CK_PSC

00

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

General-purpose timers (TIM2 to TIM5) RM0041

288/709 RM0041 Rev 6

Figure 90. Counter timing diagram with prescaler division change from 1 to 4

13.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

MS35834V1

0

30

0 1 2 3 0 1 2 3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

RM0041 Rev 6 289/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Figure 91. Counter timing diagram, internal clock divided by 1

Figure 92. Counter timing diagram, internal clock divided by 2

Figure 93. Counter timing diagram, internal clock divided by 4

00 02 03 04 05 06 0733 34 35 3631

MS35836V1

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0132

MS35835V1

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0034 0035 0036 0000 0001 0002 0003

0000 00010035 0036

MSv37301V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CNT_EN

General-purpose timers (TIM2 to TIM5) RM0041

290/709 RM0041 Rev 6

Figure 94. Counter timing diagram, internal clock divided by N

Figure 95. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

MSv37302V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

001F 20

FF 36

MSv37303V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CNT_EN

Auto-reload register

Write a new value in TIMx_ARR

RM0041 Rev 6 291/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Figure 96. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate does not change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

MSv37304V1

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CNT_EN

Auto-reload preload register

Write a new value in TIMx_ARR

Auto-reload shadow register F5 36

General-purpose timers (TIM2 to TIM5) RM0041

292/709 RM0041 Rev 6

Figure 97. Counter timing diagram, internal clock divided by 1

Figure 98. Counter timing diagram, internal clock divided by 2

Figure 99. Counter timing diagram, internal clock divided by 4

36 34 33 32 31 30 2F04 03 02 01 0005

MSv37305V1

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow (cnt_udf)

Update interrupt flag (UIF)

35

MSv37306V1

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag (UIF)

0002 0001 0000 0036 0035 0034 0033

MS40511V1

0036 00350001 0000

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag (UIF)

CNT_EN

RM0041 Rev 6 293/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Figure 100. Counter timing diagram, internal clock divided by N

Figure 101. Counter timing diagram, Update event

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

MS37340V1

001F20

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

36

MS37341V1

FF 36

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

01

CNT_EN

Auto-reload preload register

Write a new value in TIMx_ARR

00 3605 04 03 02 35 34 33 32 31 30 2F

General-purpose timers (TIM2 to TIM5) RM0041

294/709 RM0041 Rev 6

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 102. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used, for more details refer to Section 13.4.1: TIMx control register 1 (TIMx_CR1).

MS37342V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CNT_EN

Counter underflow

00020304 05 0601 02 03 0401 05 0304

RM0041 Rev 6 295/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Figure 103. Counter timing diagram, internal clock divided by 2

Figure 104. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 105. Counter timing diagram, internal clock divided by N

MS37343V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

CNT_EN

Counter underflow

0003 0002 0001 0000 0001 0002 0003

MS37344V1

0034 0035

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow (cnt_ovf)

Update interrupt flag (UIF)

CNT_EN

0036 0035

MS37345V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

Counter underflow

001F20 01

General-purpose timers (TIM2 to TIM5) RM0041

296/709 RM0041 Rev 6

Figure 106. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 107. Counter timing diagram, Update event with ARPE=1 (counter overflow)

MS37360V1

FD 36

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag (UIF)

00 02 03 04 05 06 0701

CNT_EN

Auto-reload preload register

Write a new value in TIMx_ARR

06 05 04 03 02 01

FD 36Auto-reload active register

MS37361V1

FD 36

CK_INT

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

36 34 33 32 31 30 2FF8 F9 FA FB FCF7 35

CNT_EN

Auto-reload preload register

Write a new value in TIMx_ARR

Auto-reload active register FD 36

RM0041 Rev 6 297/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin (TIx)

• External clock mode2: external trigger input (ETR).

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, Timer1 can be configured to act as a prescaler for Timer 2. Refer to Using
one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 108 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 108. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

General-purpose timers (TIM2 to TIM5) RM0041

298/709 RM0041 Rev 6

Figure 109. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so there’s no need to configure it.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2 0
1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI2F_Rising

TI2F_Falling
110

0xx

100

101

MS31196V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

ETRF 111

External clock
mode 2

ETRF

ECE

RM0041 Rev 6 299/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Figure 110. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 111 gives an overview of the external trigger input block.

Figure 111. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

MS31087V2

MS37365V1

TRGI

CK_INT

TIMx_SMCR
SMS[2:0]

(internal clock)

TI1F or
TI2F oror

Encoder
mode

ETRF

ECE

0

1

TIMx_SMCR
ETP

ETR pin

ETR
Divider

/1, /2, /4, /8
Filter

downcounterCK_INT

ETRP

TIMx_SMCR
ETPS[1:0]

TIMx_SMCR

ETF[3:0]

External clock
mode 1
External clock
mode 2
Internal clock
mode

CK_PSC

General-purpose timers (TIM2 to TIM5) RM0041

300/709 RM0041 Rev 6

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 112. Control circuit in external clock mode 2

13.3.4 Capture/compare channels

Each Capture/Compare channel (see Figure 113) is built around a capture/compare register
(including a shadow register), an input stage for capture (with digital filter, multiplexing and
prescaler) and an output stage (with comparator and output control).

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 113. Capture/compare channel (example: channel 1 input stage)

MS37362V1

34 35 36

CNT_EN

ETR

ETRP

ETRF

Counter clock = CK_INT =CK_PSC

Counter register

CK_INT

0

1
Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED
To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1TI2FP1

TRC

(from slave mode
controller)

10
IC1PS

0

1

MS33115V1

TI1

TIMx_CCER

CC1P/CC1NP

Filter
downcounter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI1F_Rising

TI1F_Falling

TIMx_CCMR1

TIMx_CCER

TI2F_Rising
(from channel 2)

TI2F_Falling
(from channel 2)

TI1F
f

CC1E

DTS

RM0041 Rev 6 301/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 114. Capture/compare channel 1 main circuit

Figure 115. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

CC1E

Capture/compare shadow register

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]
CC1S[1]

Capture

Input
mode

S

R

Read CCR1H

Read CCR1L
read_in_progress

capture_transfer CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L
write_in_progress

Output
mode

UEV

OC1PE

(from time
base unit)

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

MS33144V1

Output mode
TIMx_CNT > TIMx_CCR1

controller

TIMx_CCMR1

OC1M[2:0]

oc1ref

0

1

TIMx_CCER

Output
Enable
Circuit

OC1

TIMx_CCER

To the master mode
controller

ETRF

ai17187b

CC1P

CC1E

TIMx_CNT = TIMx_CCR1

General-purpose timers (TIM2 to TIM5) RM0041

302/709 RM0041 Rev 6

13.3.5 Input capture mode

In Input capture mode, the Capture/Compare registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must five internal clock cycles. We must program a filter duration longer than these five
clock cycles. We can validate a transition on TI1 when eight consecutive samples with
the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
0011 in the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing the CC1P bit to 0
in the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

RM0041 Rev 6 303/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

Figure 116. PWM input mode timing

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture
IC2 capture
reset counter

IC2 capture
pul se wid th

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM2 to TIM5) RM0041

304/709 RM0041 Rev 6

13.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (ocxref/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the next section.

13.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, the user must write OCxM=011, OCxPE=0,
CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx
preload is not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

RM0041 Rev 6 305/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 117.

Figure 117. Output compare mode, toggle on OC1

13.3.9 PWM mode

Pulse width modulation mode allows generating a signal with a frequency determined by the
value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The user must enable the corresponding preload register by setting
the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user has to initialize all the registers by setting the
UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx≤TIMx_CNT or TIMx_CNT≤TIMx_CCRx (depending on the direction of
the counter). However, to comply with the ETRF (OCREF can be cleared by an external
event through the ETR signal until the next PWM period), the OCREF signal is asserted
only:

• When the result of the comparison changes, or

• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

This forces the PWM by software while the timer is running.

MS37363V1

OC1REF = OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

General-purpose timers (TIM2 to TIM5) RM0041

306/709 RM0041 Rev 6

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting
mode.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1.
If the compare value is 0 then OCxREF is held at ‘0. Figure 118 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

Figure 118. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting
mode.

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts

MS31093V1

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0
‘0’

RM0041 Rev 6 307/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Center-aligned mode (up/down counting).

Figure 119 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 119. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx = 7
OCxREF

CMS=10 or 11

CCxIF

CCRx = 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx > 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx = 0
OCxREF

CMS=01
CMS=10
CMS=11

'0'

ai14681b

General-purpose timers (TIM2 to TIM5) RM0041

308/709 RM0041 Rev 6

in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if the user writes a value in the counter that is greater
than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter
was counting up, it continues to count up.

– The direction is updated if the user writes 0 or write the TIMx_ARR value in the
counter but no Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

13.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT<CCRx≤ARR (in particular, 0<CCRx),

• In downcounting: CNT>CCRx.

Figure 120. Example of one-pulse mode

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

MS31099V1

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY tPULSE

RM0041 Rev 6 309/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=0 in the TIMx_CCER register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR + 1).

• Let us say user wants to build a waveform with a transition from ‘0 to ‘1 when a
compare match occurs and a transition from ‘1 to ‘0 when the counter reaches the
auto-reload value. To do this enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

User only wants one pulse (Single mode), so write '1 in the OPM bit in the TIMx_CR1
register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

To output a waveform with the minimum delay, the user can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

13.3.11 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for
current handling. In this case, ETR must be configured as follows:

General-purpose timers (TIM2 to TIM5) RM0041

310/709 RM0041 Rev 6

1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR
register are cleared to 00.

2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is
cleared to 0.

3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the application’s needs.

Figure 121 shows the behavior of the OCxREF signal when the ETRF input becomes high,
for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in
PWM mode.

Figure 121. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the
next counter overflow.

13.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. CC1NP and CC2NP must be kept cleared. When needed, program the input filter
as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 70. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the user

MS37368V1

(CCRx)

Counter (CNT)

ETRF

OCxREF (OCxCE = ‘0’)

OCxREF (OCxCE = ‘1’)

ETRF becomes high ETRF still high

RM0041 Rev 6 311/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

must configure TIMx_ARR before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 do not switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 122 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S= ‘01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

• CC2S= ‘01’ (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

• CC1P= ‘0’, CC1NP = ‘0’, IC1F =’0000’ (TIMx_CCER register, TI1FP1 noninverted,
TI1FP1=TI1)

• CC2P= ‘0’, CC2NP = ‘0’, IC2F =’0000’ (TIMx_CCER register, TI2FP2 noninverted,
TI2FP2=TI2)

• SMS= ‘011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

• CEN = 1 (TIMx_CR1 register, Counter is enabled)

Table 70. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for
TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

General-purpose timers (TIM2 to TIM5) RM0041

312/709 RM0041 Rev 6

Figure 122. Example of counter operation in encoder interface mode

Figure 123 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 123. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical zero
can be used for this purpose. Depending on the time between two events, the counter can
also be read at regular times. The user can do this by latching the counter value into a third
input capture register if available (then the capture signal must be periodic and can be
generated by another timer). when available, it is also possible to read its value through a
DMA request generated by a Real-Time clock.

TI1

backwardjitter jitter

up down up

TI2

Counter

forward forward

MS33107V1

TI1

backwardjitter jitter

updown

TI2

Counter

forward forward

MS33108V1

down

RM0041 Rev 6 313/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.3.13 Timer input XOR function

The TI1S bit in the TIM1_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

An example of this feature used to interface Hall sensors is given in Section 12.3.18.

13.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, no need of any filter, IC1F=0000 kept). The capture prescaler is not
used for triggering, so the user does not need to configure it. The CC1S bits select the
input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and
CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edges
only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

Figure 124 shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay
between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 124. Control circuit in reset mode

MS37384V1

00

Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

General-purpose timers (TIM2 to TIM5) RM0041

314/709 RM0041 Rev 6

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, no need of any filter, IC1F=0000 kept). The capture prescaler is not
used for triggering, so the user does not need to configure it. The CC1S bits select the
input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and
CC1NP=0 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter does not start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 125. Control circuit in gated mode

Note: The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not
have any effect in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, no need of any filter, IC2F=0000 kept). The capture prescaler is not
used for triggering, so the user does not need to configure it. CC2S bits are selecting
the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 and
CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

MS40512V1

TI1
CNT_EN

Write TIF=0

37

Counter clock = CK_CNT = CK_PSC

Counter register 3832 33 34 35 363130

TIF

RM0041 Rev 6 315/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 126. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,
gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F = 0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S = 01 in TIMx_CCMR1 register to select only the input capture source

– CC1P = 0 and CC1NP = 0 in TIMx_CCER register to validate the polarity (and
detect rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

MS37386V1

TI2

CNT_EN

Counter register

TIF

37 3834 35 36

Counter clock = CK_CNT = CK_PSC

General-purpose timers (TIM2 to TIM5) RM0041

316/709 RM0041 Rev 6

Figure 127. Control circuit in external clock mode 2 + trigger mode

13.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave mode.

Figure 128 presents an overview of the trigger selection and the master mode selection
blocks.

Note: The clock of the slave timer must be enabled prior to receiving events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

Using one timer as prescaler for another timer

Figure 128. Master/Slave timer example

MS33110V1

34 35 36

TIF

Counter register

Counter clock = CK_CNT = CK_PSC

ETR

CEN/CNT_EN

TI1

MS33118V3

Counter

Master
mode
control

UEV

Prescaler

Clock

Slave
mode
control CounterPrescaler

CK_PSCITR2TRGO1

MMS SMSTS

Input
trigger

selection

TIM3 TIM2

RM0041 Rev 6 317/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

For example, the user can configure TIM3 to act as a prescaler for TIM2. Refer to
Figure 128. To do this:

• Configure TIM3 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If MMS=010 is written in the TIM3_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

• To connect the TRGO1 output of TIM3 to TIM2, TIM2 must be configured in slave mode
using ITR2 as internal trigger. Select this through the TS bits in the TIM2_SMCR
register (writing TS=010).

• Then put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes TIM2 to be clocked by the rising edge of the
periodic TIM3 trigger signal (which correspond to the TIM3 counter overflow).

• Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on TIM3 as the trigger output (MMS=1xx), its rising edge is used to clock
the counter of TIM2.

Using one timer to enable another timer

In this example, we control the enable of TIM2 with the output compare 1 of Timer 1. Refer
to Figure 128 for connections. TIM2 counts on the divided internal clock only when OC1REF
of TIM3 is high. Both counter clock frequencies are divided by 3 by the prescaler compared
to CK_INT (fCK_CNT = fCK_INT/3).

• Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

• Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

• Configure TIM2 to get the input trigger from TIM3 (TS=010 in the TIM2_SMCR
register).

• Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

• Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the TIM2
counter enable signal.

Figure 129. Gating TIM2 with OC1REF of TIM3

In the example in Figure 129, the TIM2 counter and prescaler are not initialized before being
started. So they start counting from their current value. It is possible to start from a given

MS33119V1

CK_INT

FC FD FE FF 00 01

TIM3-OC1REF

TIM3-CNT

30463045 3047 3048TIM2-CNT

TIM2-TIF

Write TIF = 0

General-purpose timers (TIM2 to TIM5) RM0041

318/709 RM0041 Rev 6

value by resetting both timers before starting TIM3. The user can then write any value in the
timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

In the next example, we synchronize TIM3 and TIM2. TIM3 is the master and starts from 0.
TIM2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. TIM2
stops when TIM3 is disabled by writing ‘0 to the CEN bit in the TIM3_CR1 register:

• Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

• Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

• Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

• Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

• Reset TIM3 by writing ‘1 in UG bit (TIM3_EGR register).

• Reset TIM2 by writing ‘1 in UG bit (TIM2_EGR register).

• Initialize TIM2 to 0xE7 by writing ‘0xE7’ in the TIM2 counter (TIM2_CNTL).

• Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

• Stop TIM3 by writing ‘0 in the CEN bit (TIM3_CR1 register).

Figure 130. Gating TIM2 with Enable of TIM3

Using one timer to start another timer

In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to
Figure 128 for connections. Timer 2 starts counting from its current value (which can be
non-zero) on the divided internal clock as soon as the update event is generated by Timer 1.
When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter

MS33120V1

CK_INT

75 00

E7

TIM3-CNT_INIT

TIM3-CNT

ABTIM2-CNT

TIM2-CNT_INIT

Write TIF = 0

01 02

E9E800

TIM3-CEN=CNT_EN

TIM2-write CNT

TIM2-TIF

RM0041 Rev 6 319/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure TIM3 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM3_CR2 register).

• Configure the TIM3 period (TIM3_ARR registers).

• Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

• Configure TIM2 in trigger mode (SMS=110 in TIM2_SMCR register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Figure 131. Triggering TIM2 with update of TIM3

As in the previous example, both counters can be initialized before starting counting.
Figure 132 shows the behavior with the same configuration as in Figure 131 but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

Figure 132. Triggering TIM2 with Enable of TIM3

MS33121V1

CK_INT

TIM2-CNT

FDTIM3-CNT

Write TIF = 0

TIM2-CEN=CNT_EN

TIM2-TIF

FE FF 00 01 02

46 47 4845

TIM3-UEV

MS33122V1

CK_INT

TIM2-CNT

TIM3-CNT_INIT

Write TIF = 0

TIM3-CEN=CNT_EN

TIM2-TIF

E7

0200 01

E9

75

CD 00 E8 EA

TIM3-CNT

TIM2-CNT_INIT

TIM2
write CNT

General-purpose timers (TIM2 to TIM5) RM0041

320/709 RM0041 Rev 6

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of TIM3 when its TI1 input rises, and the enable of TIM2
with the enable of TIM3. Refer to Figure 128 for connections. To ensure the counters are
aligned, TIM3 must be configured in Master/Slave mode (slave with respect to TI1, master
with respect to TIM2):

• Configure TIM3 master mode to send its Enable as trigger output (MMS=001 in the
TIM3_CR2 register).

• Configure TIM1 slave mode to get the input trigger from TI1 (TS=100 in the
TIM3_SMCR register).

• Configure TIM3 in trigger mode (SMS=110 in the TIM3_SMCR register).

• Configure the TIM3 in Master/Slave mode by writing MSM=1 (TIM3_SMCR register).

• Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

• Configure TIM2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (TIM3), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but the user can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). The master/slave mode inserts a delay
between CNT_EN and CK_PSC on TIM3.

Figure 133. Triggering TIM3 and TIM2 with TIM3 TI1 input

13.3.16 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core - halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBGMCU module. For more details, refer to Section 25.15.2: Debug support for
timers, watchdog and I2C.

MS33123V1

CK_INT

TIM2-CNT

TIM3-CEN=CNT_EN

TIM2-TIF

01TIM3-CNT 02 03 04 05 06 07 08 0900

01 02 03 04 05 06 07 08 0900

TIM2-CEN=CNT_EN

TIM3-TIF

TIM3-CK_PSC

TIM3-TI1

TIM2-CK_PSC

RM0041 Rev 6 321/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4 TIMx2 to TIM5 registers

Refer to Section 2.2 for a list of abbreviations used in register descriptions.

The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral
registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be
done by bytes (8 bits), half-words (16 bits) or words (32 bits).

13.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

General-purpose timers (TIM2 to TIM5) RM0041

322/709 RM0041 Rev 6

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0041 Rev 6 323/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1S MMS[2:0] CCDS

Reserved
rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)
See also Section 12.3.18: Interfacing with Hall sensors

Bits 6:4 MMS[2:0]: Master mode selection

These bits can be used to select the information to be sent in master mode to slave timers
for synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, must be kept at reset value.

General-purpose timers (TIM2 to TIM5) RM0041

324/709 RM0041 Rev 6

13.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] OCCS SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

RM0041 Rev 6 325/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0).
001: Internal Trigger 1 (ITR1).
010: Internal Trigger 2 (ITR2).
011: Internal Trigger 3 (ITR3).
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See Table 71: TIMx internal trigger connection on page 326 for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 OCCS: OCREF clear selection

This bit is used to select the OCREF clear source
0: OCREF_CLR_INT is connected to the OCREF_CLR input
1: OCREF_CLR_INT is connected to ETRF

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control register
description.
000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode
checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.

General-purpose timers (TIM2 to TIM5) RM0041

326/709 RM0041 Rev 6

13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Table 71. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM2 TIM1 TIM15 TIM3 TIM4

TIM3 TIM1 TIM2 TIM15 TIM4

TIM4 TIM1 TIM2 TIM3 TIM15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Res
CC4DE CC3DE CC2DE CC1DE UDE

Res.
TIE

Res
CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled
1: CC3 DMA request enabled

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

RM0041 Rev 6 327/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4OF CC3OF CC2OF CC1OF

Reserved
TIF

Res
CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

General-purpose timers (TIM2 to TIM5) RM0041

328/709 RM0041 Rev 6

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow
(in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected
on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
At overflow or underflow (for TIM2 to TIM4) and if UDIS=0 in the TIMx_CR1 register.
When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.
When CNT is reinitialized by a trigger event (refer to the synchro control register description),
if URS=0 and UDIS=0 in the TIMx_CR1 register.

RM0041 Rev 6 329/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Res.
CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

General-purpose timers (TIM2 to TIM5) RM0041

330/709 RM0041 Rev 6

13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. Take care that the same bit can have a
different meaning for the input stage and for the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

RM0041 Rev 6 331/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK
bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output).

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM2 to TIM5) RM0041

332/709 RM0041 Rev 6

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0041 Rev 6 333/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4CE OC4M[2:0] OC4PE OC4FE
CC4S[1:0]

OC3CE OC3M[2:0] OC3PE OC3FE
CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

General-purpose timers (TIM2 to TIM5) RM0041

334/709 RM0041 Rev 6

Input capture mode

13.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4P CC4E

Reserved
CC3P CC3E

Reserved
CC2P CC2E

Reserved
CC1P CC1E

rw rw rw rw rw rw rw rw

Bits 15:14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output polarity

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable

refer to CC1E description

Bits 11:10 Reserved, must be kept at reset value.

Bit 9 CC3P: Capture/Compare 3 output polarity

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable

refer to CC1E description

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

RM0041 Rev 6 335/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Note: The state of the external IO pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO and AFIO registers.

13.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

13.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
This bit selects whether IC1 or IC1 is used for trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1. When used as external trigger, IC1
is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When used as external trigger, IC1 is
inverted.

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Table 72. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

General-purpose timers (TIM2 to TIM5) RM0041

336/709 RM0041 Rev 6

Reset value: 0x0000

13.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

13.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Low Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 13.3.1: Time-base unit for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The
TIMx_CCR1 register is read-only and cannot be programmed.

RM0041 Rev 6 337/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

13.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

13.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

13.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2). The
TIMx_CCR2 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC3 output.
If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3). The
TIMx_CCR3 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

General-purpose timers (TIM2 to TIM5) RM0041

338/709 RM0041 Rev 6

13.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

13.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

Bits 15:0 CCR4[15:0]: Capture/Compare value

1. if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4
register (bit OC4PE). Else the preload value is copied in the active capture/compare 4
register when an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.

2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4). The
TIMx_CCR4 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0041 Rev 6 339/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

General-purpose timers (TIM2 to TIM5) RM0041

340/709 RM0041 Rev 6

13.4.19 TIMx register map

TIMx registers are mapped as described in the table below:

Table 73. TIMx register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0] A

R
P

E CMS
[1:0] D

IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved T
I1

S MMS
[2:0] C

C
D

S

R
e

se
rv

e
d

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0]

ETF[3:0]

M
S

M

TS[2:0]

R
e

se
rv

ed SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

R
e

se
rv

e
d

T
IE

R
e

se
rv

e
d

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
e

se
rv

e
d

T
IF

R
e

se
rv

e
d

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved
T

G

R
e

se
rv

e
d

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output

compare
mode

Reserved O
C

2C
E

OC2M
[2:0]

O
C

2
P

E

O
C

2
F

E

CC2S
[1:0]

O
C

1C
E

OC1M
[2:0]

O
C

1
P

E

O
C

1
F

E
CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output

compare
mode

Reserved O
C

4C
E

OC4M
[2:0]

O
C

4P
E

O
C

4
F

E

CC4S
[1:0]

O
C

3C
E

OC3M
[2:0]

O
C

3P
E

O
C

3
F

E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0]

IC3F[3:0]
IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved

R
e

se
rv

e
d

C
C

4
P

C
C

4
E

R
e

se
rv

e
d

C
C

3
P

C
C

3
E

R
e

se
rv

e
d

C
C

2
P

C
C

2
E

R
e

se
rv

e
d

C
C

1
P

C
C

1
E

Reset value 0 0 0 0 0 0 0 0

RM0041 Rev 6 341/709

RM0041 General-purpose timers (TIM2 to TIM5)

341

Refer to for the register boundary addresses.

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

Reserved
CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

Reserved
CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44 Reserved

0x48
TIMx_DCR

Reserved
DBL[4:0]

R
es

er
ve

d

DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 73. TIMx register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM12/13/14) RM0041

342/709 RM0041 Rev 6

14 General-purpose timers (TIM12/13/14)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 Kbytes and 1 Mbyte.

This section applies to high density value line devices only.

14.1 TIM12/13/14 introduction

The TIM12/13/14 general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM12/13/14 timers are completely independent, and do not share any resources. They
can be synchronized together as described in Section 14.3.12.

14.2 TIM12/13/14 main features

14.2.1 TIM12 main features

The features of the general-purpose timer include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• Up to 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together

• Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software or internal trigger)

– Trigger event (counter start, stop, initialization or count by internal trigger)

– Input capture

– Output compare

RM0041 Rev 6 343/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 134. General-purpose timer block diagram (TIM12)

14.2.2 TIM13/TIM14 main features

The features of general-purpose timers TIM13/TIM14 include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• independent channel for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

U

U

U

CC1I

CC2I

Trigger
controller

+/-

Stop, Clear

TI1FP1
TI2FP2

ITR0
ITR1
ITR2 TRGI

Output
control

OC1REF

OC2REF

U

UI

Reset, enable, up, count

CK_PSC

IC1

IC2 IC2PS

IC1PS
TI1FP1

TGI

TRC

TRC

ITR
TRC

TI1F_ED

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

OC1

OC2

TIMx_CH1

TIMx_CH2

Slave
controller

mode

PSC
prescaler CNT counter

Internal clock (CK_INT)

CK_CNT

ITR3

ai17190b

Input filter &
edge detector

Capture/Compare 1 register

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt

Auto-reload register

Capture/Compare 2 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

General-purpose timers (TIM12/13/14) RM0041

344/709 RM0041 Rev 6

Figure 135. General-purpose timer block diagram (TIM13/14)

Autoreload register

Capture/Compare 1 register

U

U
CC1I

Stop, Clear

output
control

OC1OC1REF

U

UI

IC1
PrescalerInput filter &

edge detector
IC1PS

TI1FP1

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

CC1I

TI1

TIMx_CH1

prescaler counter
+/-CK_PSC PSC CNTCK_CNT

Internal clock (CK_INT)

ai17725c

Trigger
Controller

Enable
counter

TIMx_CH1

RM0041 Rev 6 345/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.3 TIM12/13/14 functional description

14.3.1 Time-base unit

The main block of the timer is a 16-bit counter with its related auto-reload register. The
counters counts up.

The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be
generated by software. The generation of the update event is described in details for each
configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 136 and Figure 137 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

General-purpose timers (TIM12/13/14) RM0041

346/709 RM0041 Rev 6

Figure 136. Counter timing diagram with prescaler division change from 1 to 2

Figure 137. Counter timing diagram with prescaler division change from 1 to 4

CK_PSC

00

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V2

0

30

0 1 2 3 0 1 2 3

MS31077V2

CK_PSC

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

RM0041 Rev 6 347/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller on TIM12) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 138. Counter timing diagram, internal clock divided by 1

00 02 03 04 05 06 0733 34 35 3631

MS31078V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0132

General-purpose timers (TIM12/13/14) RM0041

348/709 RM0041 Rev 6

Figure 139. Counter timing diagram, internal clock divided by 2

Figure 140. Counter timing diagram, internal clock divided by 4

Figure 141. Counter timing diagram, internal clock divided by N

MS31079V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0034 0035 0036 0000 0001 0002 0003

MS31080V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0000 00010035 0036

MS31081V3

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

001F 20

RM0041 Rev 6 349/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 142. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 143. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

FF 36

MS31082V3

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CEN

Auto-reload preload register

Write a new value in TIMx_ARR

MS31083V2

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Auto-reload shadow
register F5 36

General-purpose timers (TIM12/13/14) RM0041

350/709 RM0041 Rev 6

14.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1 (for TIM12): external input pin (TIx)

• Internal trigger inputs (ITRx) (for TIM12): connecting the trigger output from another
timer. Refer to Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

The internal clock source is the default clock source for TIM13/TIM14.

For TIM9, the internal clock source is selected when the slave mode controller is disabled
(SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR
register are then used as control bits and can be changed only by software (except for UG
which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is
clocked by the internal clock CK_INT.

Figure 144 shows the behavior of the control circuit and of the upcounter in normal mode,
without prescaler.

Figure 144. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1(TIM12)

This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

RM0041 Rev 6 351/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 145. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=’0000’).

3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register.

6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so no need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 146. Control circuit in external clock mode 1

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2 0
1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI2F_Rising

TI2F_Falling
110

0xx

100

101

MS37337V1

(internal clock)

TI1F or
TI2F oror

Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF = 0
MS31087V3

General-purpose timers (TIM12/13/14) RM0041

352/709 RM0041 Rev 6

14.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 147 to Figure 149 give an overview of a capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 147. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

0

1
Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED
To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1TI2FP1

TRC

(from slave mode
controller)

10
IC1PS

0

1

MS33115V1

TI1

TIMx_CCER

CC1P/CC1NP

Filter
downcounter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI1F_Rising

TI1F_Falling

TIMx_CCMR1

TIMx_CCER

TI2F_Rising
(from channel 2)

TI2F_Falling
(from channel 2)

TI1F
f

CC1E

DTS

RM0041 Rev 6 353/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 148. Capture/compare channel 1 main circuit

Figure 149. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

14.3.5 Input capture mode

In Input capture mode, the Capture/Compare registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be

MS31089V3

CC1E

Capture/compare shadow register

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]
CC1S[1]

Capture

Input
mode

S

R

Read CCR1H

Read CCR1L
read_in_progress

capture_transfer CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L
write_in_progress

Output
mode

UEV

OC1PE

(from time
base unit)

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

ai17720

Output
mode

controller

CNT > CCR2

CNT = CCR2

TIMx_CCMR1

OC2M[2:0]

0

1

CC1P

TIMx_CCER

Output
enable
circuit

OC1

CC1E TIMx_CCER

To the master
mode controller

OC1_REF

General-purpose timers (TIM12/13/14) RM0041

354/709 RM0041 Rev 6

cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when the user writes it to ‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’,
the channel is configured in input mode and the TIMx_CCR1 register becomes read-
only.

2. Program the needed input filter duration with respect to the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must 5 internal clock cycles. We must program a filter duration longer than these 5
clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the
new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
‘0011’ in the TIMx_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by programming CC1P and
CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case).

4. Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in
the TIMx_EGR register.

RM0041 Rev 6 355/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.3.6 PWM input mode (only for TIM12)

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1
register (TI1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1
register (TI1 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to '1' and the CC2NP bit to '0' (active on falling edge).

5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 150. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture
IC2 capture
reset counter

IC2 capture
pul se wid th

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM12/13/14) RM0041

356/709 RM0041 Rev 6

14.3.7 Forced output mode

In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to
write ‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=’0’ (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the
TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the output compare mode section below.

14.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

1. Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set
active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on
match.

2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = ‘0’ to disable preload register

– Write CCxP = ‘0’ to select active high polarity

– Write CCxE = ‘1’ to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

RM0041 Rev 6 357/709

RM0041 General-purpose timers (TIM12/13/14)

455

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 151.

Figure 151. Output compare mode, toggle on OC1.

14.3.9 PWM mode

Pulse Width Modulation mode allows the user to generate a signal with a frequency
determined by the value of the TIMx_ARR register and a duty cycle determined by the value
of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. Enable the corresponding preload register by setting the OCxPE bit
in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the
ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user has to initialize all the registers by setting the
UG bit in the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. The OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CNT ≤TIMx_CCRx.

The timer is able to generate PWM in edge-aligned mode only since the counter is
upcounting.

PWM edge-aligned mode

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in

MS31092V2

OC1REF= OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

General-purpose timers (TIM12/13/14) RM0041

358/709 RM0041 Rev 6

TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at
‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 152 shows some edge-
aligned PWM waveforms in an example where TIMx_ARR=8.

Figure 152. Edge-aligned PWM waveforms (ARR=8)

14.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be as follows:

CNT < CCRx≤ ARR (in particular, 0 < CCRx)

MS31093V1

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0
‘0’

RM0041 Rev 6 359/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 153. Example of one pulse mode.

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Use TI2FP2 as trigger 1:

1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER
register.

3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ‘0’ to ‘1’ when a
compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the
auto-reload value. To do this enable PWM mode 2 by writing OC1M=’111’ in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the user has to write the compare value in the TIMx_CCR1 register, the auto-
reload value in the TIMx_ARR register, generate an update by setting the UG bit and
wait for external trigger event on TI2. CC1P is written to ‘0’ in this example.

The user only wants one pulse (Single mode), so write '1 in the OPM bit in the TIMx_CR1
register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive mode is selected.

MS31099V1

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY tPULSE

General-purpose timers (TIM12/13/14) RM0041

360/709 RM0041 Rev 6

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

14.3.11 TIM12 external trigger synchronization

The TIM12 timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, no need of any filter, IC1F = 0000 kept). The capture prescaler is not
used for triggering, so there’s no need to configure it. The CC1S bits select the input
capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register. Program CC1P and
CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and detect rising edges
only).

2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select
TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if
enabled (depending on the TIE bit in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

RM0041 Rev 6 361/709

RM0041 General-purpose timers (TIM12/13/14)

455

Figure 154. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, no need of any filter, IC1F=’0000’ kept). The capture prescaler is not
used for triggering, so there’s no need to configure it. The CC1S bits select the input
capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program CC1P=’1’ and
CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect low level only).

2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register.
Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the
counter does not start if CEN=’0’, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

MS31401V2

00

Counter clock = ck_cnt = ck_psc

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

General-purpose timers (TIM12/13/14) RM0041

362/709 RM0041 Rev 6

Figure 155. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, no need of any filter, IC2F=’0000’ kept). The capture prescaler is not
used for triggering, so there’s no need to configure it. The CC2S bits are configured to
select the input capture source only, CC2S=’01’ in TIMx_CCMR1 register. Program
CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the polarity (and detect
low level only).

2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register.
Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 156. Control circuit in trigger mode

MS31402V1

TI1

cnt_en

Write TIF=0

37

Counter clock = ck_cnt = ck_psc

Counter register 3832 33 34 35 363130

TIF

MS31403V1

TI2

cnt_en

37

Counter clock = ck_cnt = ck_psc

Counter register 3834 35 36

TIF

RM0041 Rev 6 363/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.3.12 Timer synchronization (TIM12)

The TIM timers are linked together internally for timer synchronization or chaining. Refer to
Section 13.3.15: Timer synchronization for details.

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

14.3.13 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 25.15.2: Debug support for timers,
watchdog and I2C.

General-purpose timers (TIM12/13/14) RM0041

364/709 RM0041 Rev 6

14.4 TIM12 registers

Refer to Section 2.2 for a list of abbreviations used in register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

14.4.1 TIM12 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an update interrupt if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update event (UEV) generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0041 Rev 6 365/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.4.2 TIM12 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS[2:0]: Master mode selection

These bits are used to select the information to be sent in Master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit in the TIMx_EGR register is used as the trigger output (TRGO). If
the reset is generated by the trigger input (slave mode controller configured in reset mode)
then the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as the trigger output (TRGO). It
is useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between the CEN control
bit and the trigger input when configured in Gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as the trigger output (TRGO). For instance a
master timer can be used as a prescaler for a slave timer.
011: Compare pulse - The trigger output sends a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurs.
(TRGO).
100: Compare - OC1REF signal is used as the trigger output (TRGO).
101: Compare - OC2REF signal is used as the trigger output (TRGO).
110: Reserved
111: Reserved

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bits 3:0 Reserved, must be kept at reset value.

General-purpose timers (TIM12/13/14) RM0041

366/709 RM0041 Rev 6

14.4.3 TIM12 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MSM TS[2:0]

Res.
SMS[2:0]

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful in
order to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved.
See Table 74: TIMx Internal trigger connection on page 367for more details on the meaning
of ITRx for each timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to
avoid wrong edge detections at the transition.

RM0041 Rev 6 367/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.4.4 TIM12 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input control register and Control register
descriptions.
000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal
clock
001: Reserved
010: Reserved
011: Reserved
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops
are both controlled
110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
Gated mode checks the level of the trigger signal.

Note: The clock of the slave timer must be enabled prior to receive events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.

Table 74. TIMx Internal trigger connection(1)

1. When a timer is not present in the product, the corresponding trigger ITRx is not available.

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM12 TIM4 TIM5 TIM13_OC TIM14_OC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TIE

Res
CC2IE CC1IE UIE

rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5:3 Reserved, must be kept at reset value.

General-purpose timers (TIM12/13/14) RM0041

368/709 RM0041 Rev 6

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0041 Rev 6 369/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.4.5 TIM12 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2OF CC1OF

Reserved
TIF

Reserved
CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

General-purpose timers (TIM12/13/14) RM0041

370/709 RM0041 Rev 6

14.4.6 TIM event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and
UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Reserved
CC2G CC1G UG

w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software to generate an event, it is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
the CC1IF flag is set, the corresponding interrupt is sent if enabled.
If channel CC1 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. The prescaler counter
is also cleared and the prescaler ratio is not affected. The counter is cleared.

RM0041 Rev 6 371/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits in this register have different functions in input and output modes. For a given bit, OCxx
describes its function when the channel is configured in output mode, ICxx describes its
function when the channel is configured in input mode. Take care that the same bit can have
different meanings for the input stage and the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

Res. OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

General-purpose timers (TIM12/13/14) RM0041

372/709 RM0041 Rev 6

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N
depend on the CC1P and CC1NP bits, respectively.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. The OC1REF signal is forced high when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1
100: Force inactive level - OC1REF is forced low
101: Force active level - OC1REF is forced high
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else it is inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1, else it is active (OC1REF=’1’)
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else it is active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1
else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken into account immediately
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded into the active register at each update event

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on the counter and CCR1 values even when the
trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the
trigger input is 5 clock cycles
1: An active edge on the trigger input acts like a compare match on the CC1 output. Then,
OC is set to the compare level independently of the result of the comparison. Delay to
sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE
acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0041 Rev 6 373/709

RM0041 General-purpose timers (TIM12/13/14)

455

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bitfield defines the frequency used to sample the TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N consecutive
events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM12/13/14) RM0041

374/709 RM0041 Rev 6

14.4.8 TIM12 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2NP

Res.
CC2P CC2E CC1NP

Res.
CC1P CC1E

rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 output Polarity

refer to CC1NP description

Bits 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity

CC1 channel configured as output: CC1NP must be kept cleared
CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.

Note: 11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This
configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

RM0041 Rev 6 375/709

RM0041 General-purpose timers (TIM12/13/14)

455

Note: The states of the external I/O pins connected to the standard OCx channels depend on the
state of the OCx channel and on the GPIO registers.

14.4.9 TIM12 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

14.4.10 TIM12 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

14.4.11 TIM12 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

Table 75. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to the Section 14.3.1: Time-base unit for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM12/13/14) RM0041

376/709 RM0041 Rev 6

14.4.12 TIM12 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

14.4.13 TIM12 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(OC1PE bit). Else the preload value is copied into the active capture/compare 1 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signaled on the OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The
TIMx_CCR1 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(OC2PE bit). Else the preload value is copied into the active capture/compare 2 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signalled on the OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2). The
TIMx_CCR2 register is read-only and cannot be programmed.

RM0041 Rev 6 377/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.4.14 TIM12 register map

TIM12 registers are mapped as 16-bit addressable registers as described below. The
reserved memory areas are highlighted in gray in the table.

Table 76. TIM12 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0]

A
R

P
E

Reserved O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

Reserved

Reset value 0 0 0

0x08
TIMx_SMCR

Reserved M
S

M TS[2:0]

R
e

se
rv

e
d

SMS[2:0]

Reset value 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
IE

Reserved C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

2
O

F

C
C

1
O

F

R
es

er
ve

d

T
IF

Reserved C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved T
G

Reserved C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0

0x18

TIMx_CCMR1
Output compare

mode Reserved

OC2M
[2:0]

O
C

2P
E

O
C

2
F

E CC2S
[1:0]

R
e

se
rv

e
d OC1M

[2:0]

O
C

1P
E

O
C

1
F

E CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved

C
C

2
N

P

R
es

er
ve

d

C
C

2P

C
C

2E

C
C

1
N

P

R
es

er
ve

d

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

General-purpose timers (TIM12/13/14) RM0041

378/709 RM0041 Rev 6

Refer to for the register boundary addresses.

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C to
0x4C

Reserved

Table 76. TIM12 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0041 Rev 6 379/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.5 TIM13/14 registers

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

14.5.1 TIM13/14 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the update interrupt (UEV) sources.
0: Any of the following events generate an UEV if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an UEV if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update interrupt (UEV) event
generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit.
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

General-purpose timers (TIM12/13/14) RM0041

380/709 RM0041 Rev 6

14.5.2 TIM10/11/13/14 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

14.5.3 TIM13/14 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1IE UIE

rw rw

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1OF

Reserved
CC1IF UIF

rc_w0 rc_w0 rc_w0

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:2 Reserved, must be kept at reset value.

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

RM0041 Rev 6 381/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.5.4 TIM13/14 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

14.5.5 TIM13/14 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So take care that the same bit can have a
different meaning for the input stage and for the output stage.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if
URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1G UG

w w

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

Reserved
IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw

General-purpose timers (TIM12/13/14) RM0041

382/709 RM0041 Rev 6

Output compare mode

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 is
derived. OC1REF is active high whereas OC1 active level depends on CC1P bit.
000: Frozen. The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive.
111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active.

Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison
changes or when the output compare mode switches from frozen to PWM mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then
set to the compare level independently of the result of the comparison. Delay to sample the
trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the
channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: Reserved
11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0041 Rev 6 383/709

RM0041 General-purpose timers (TIM12/13/14)

455

Input capture mode

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10:
11:

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM12/13/14) RM0041

384/709 RM0041 Rev 6

14.5.6 TIM13/14 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Note: The state of the external I/O pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1NP

Res.
CC1P CC1E

rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity.

CC1 channel configured as output: CC1NP must be kept cleared.
CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define
TI1FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted.
01: inverted/falling edge
Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted.
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not
inverted.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 77. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

RM0041 Rev 6 385/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.5.7 TIM13/14 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

14.5.8 TIM13/14 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

14.5.9 TIM13/14 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to Section 14.3.1: Time-base unit for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM12/13/14) RM0041

386/709 RM0041 Rev 6

14.5.10 TIM13/14 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1
register is read-only and cannot be programmed.

RM0041 Rev 6 387/709

RM0041 General-purpose timers (TIM12/13/14)

455

14.5.11 TIM13/14 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below.

Table 78. TIM13/14 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0]

A
R

P
E

Reserve
d O

P
M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x08
TIMx_SMCR

Reserved

Reset value

0x0C
TIMx_DIER

Reserved C
C

1I
E

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved

C
C

1
O

F

Reserved C
C

1I
F

U
IF

Reset value 0 0 0

0x14
TIMx_EGR

Reserved C
C

1
G

U
G

Reset value 0 0

0x18

TIMx_CCMR1
Output compare

mode Reserved

OC1M
[2:0]

O
C

1
P

E

O
C

1F
E CC1S

[1:0]

Reset value 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode Reserved
IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved
C

C
1

N
P

R
e

se
rv

e
d

C
C

1
P

C
C

1
E

Reset value 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38 to
0x4C

Reserved

General-purpose timers (TIM15/16/17) RM0041

388/709 RM0041 Rev 6

15 General-purpose timers (TIM15/16/17)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

15.1 TIM15/16/17 introduction

The TIM15/16/17 timers consist of a 16-bit auto-reload counter driven by a programmable
prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM15/16/17 timers are completely independent, and do not share any resources. They
can be synchronized together as described in Section 14.3.12.

RM0041 Rev 6 389/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.2 TIM15 main features

TIM15 includes the following features:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divid (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• Up to 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge mode)

– One-pulse mode output

• Complementary outputs with programmable dead-time (for channel 1 only)

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together

• Repetition counter to update the timer registers only after a given number of cycles of
the counter

• Break input to put the timer’s output signals in the reset state or a known state

• Interrupt/DMA generation on the following events:

– Update: counter overflow, counter initialization (by software or internal/external
trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input (interrupt request)

General-purpose timers (TIM15/16/17) RM0041

390/709 RM0041 Rev 6

15.3 TIM16 and TIM17 main features

The TIM16 and TIM17 timers include the following features:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• One channel for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Complementary outputs with programmable dead-time

• Repetition counter to update the timer registers only after a given number of cycles of
the counter

• Break input to put the timer’s output signals in the reset state or a known state

• Interrupt/DMA generation on the following events:

– Update: counter overflow

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

RM0041 Rev 6 391/709

RM0041 General-purpose timers (TIM15/16/17)

455

Figure 157. TIM15 block diagram

Prescaler

Auto-reload register

counter

Capture/Compare 1 register

Capture/Compare 2 register

U

U

U

CC1I

CC2I

Trigger
controller

+/-

Stop, clear or up/down

TI1FP1
TI2FP2

ITR0
ITR1
ITR2 TRGI

controller

output
control

DTG

DTG registers

TRGO

OC1REF

OC2REF

REP register

URepetition
counter

UI

Reset, enable, up, count

CK_PSC

IC1

IC2
Prescaler

PrescalerInput filter &
Edge detector

IC2PS

IC1PSTI1FP1

output
control

Reg

event

Notes:
Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

TGI

TRC

TRC

ITR

TRC

TI1F_ED

Input filter &
Edge detector

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

BI

TI1

TI2

TIMx_CH1

TIMx_CH2

BRK
TIMx_BKIN

OC1

OC2

TIMx_CH1

TIMx_CH2

TIMx_CH1N
OC1N

to other timers

mode
Slave

PSC CNT

Internal clock (CK_INT)

CK_CNT

Clock failure event from clock controller

Polarity selection

CSS (clock security system

CK_TIM1121314151617 from RCC

ITR3

ai17330

General-purpose timers (TIM15/16/17) RM0041

392/709 RM0041 Rev 6

Figure 158. TIM16 and TIM17 block diagram

Internal clock (CK_INT)

Counter Enable (CEN)

TIMx_CH1

TIMx_BKIN

TI1

BRK
Polarity selection

Input filter &
edge selector

Internal break event sources

Auto-reload register

CNT counter+/-

Capture/compare 1 register

BI

TI1FP1 IC1

REP register

Repetition
counter

DTG registers

DTG
Output
control

CK_PSC CK_CNT

IC1PS

Stop, clear or up/down

OC1REF

CC1IC1I
U

UI

U

OC1

OC1N

TIMx_CH1

TIMx_CH1N

U

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt & DMA output

PSC
prescaler

Prescaler

MS31415V5

RM0041 Rev 6 393/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.4 TIM15/16/17 functional description

15.4.1 Time-base unit

The main block of the programmable timer is a 16-bit counter with its related auto-reload
register. The counter can count up, down or both up and down. The counter clock can be
divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

• Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 159 and Figure 160 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

General-purpose timers (TIM15/16/17) RM0041

394/709 RM0041 Rev 6

Figure 159. Counter timing diagram with prescaler division change from 1 to 2

Figure 160. Counter timing diagram with prescaler division change from 1 to 4

15.4.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is
repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR + 1). Else the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

RM0041 Rev 6 395/709

RM0041 General-purpose timers (TIM15/16/17)

455

preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register,

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 161. Counter timing diagram, internal clock divided by 1

Figure 162. Counter timing diagram, internal clock divided by 2

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

CK_PSC

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

General-purpose timers (TIM15/16/17) RM0041

396/709 RM0041 Rev 6

Figure 163. Counter timing diagram, internal clock divided by 4

Figure 164. Counter timing diagram, internal clock divided by N

Figure 165. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

CK_PSC

0000 0001

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

CK_PSC

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

RM0041 Rev 6 397/709

RM0041 General-purpose timers (TIM15/16/17)

455

Figure 166. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

15.4.3 Repetition counter

Section 14.3.1: Time-base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
counter has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx
capture/compare registers in compare mode) every N+1 counter overflows or underflows,
where N is the value in the TIMx_RCR repetition counter register.

The repetition counter is decremented at each counter overflow in upcounting mode.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined by
the TIMx_RCR register value (refer to Figure 167). When the update event is generated by
software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and the
repetition counter is reloaded with the content of the TIMx_RCR register.

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

General-purpose timers (TIM15/16/17) RM0041

398/709 RM0041 Rev 6

Figure 167. Update rate examples depending on mode and TIMx_RCR register
settings

15.4.4 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin

• Internal trigger inputs (ITRx) (only for TIM15): using one timer as the prescaler for
another timer, for example, TIM1 can be configured to act as a prescaler for TIM15.
Refer to Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 144 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Edge-aligned mode

UEV

UEV

UEV

UEV

UEV Update Event: Preload registers transferred to active registers and update interrupt generated

Counter

TIMx_RCR = 0

TIMx_RCR = 1

TIMx_RCR = 2

TIMx_RCR = 3

UEV

TIMx_RCR = 3
and

re-synchronization

(by SW)

TIMx_CNT

Upcounting

ai17332

RM0041 Rev 6 399/709

RM0041 General-purpose timers (TIM15/16/17)

455

Figure 168. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

Figure 169. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so there’s no need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Internal clock

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

CK_INT

encoder
mode

external clock
mode 1

internal clock
mode

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2
0

1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
Detector

TI2F_Rising

TI2F_Falling 110

0xx

100

101

General-purpose timers (TIM15/16/17) RM0041

400/709 RM0041 Rev 6

Figure 170. Control circuit in external clock mode 1

15.4.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 147 to Figure 174 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 171. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

TI1 0

1

TIMx_CCER

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

downcounter

TIMx_CCMR1

Edge
Detector

TI1F_Rising

TI1F_Falling

to the slave mode controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from slave mode
controller)

10

fDTS

TIMx_CCER

CC1E

IC1PS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

RM0041 Rev 6 401/709

RM0041 General-purpose timers (TIM15/16/17)

455

Figure 172. Capture/compare channel 1 main circuit

Figure 173. Output stage of capture/compare channel (channel 1)

Figure 174. Output stage of capture/compare channel (channel 2 for TIM15)

CC1E

Capture/compare shadow register

comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

APB Bus

8 8

h
ig

h

lo
w

(if
 1

6
-b

it)

MCU-peripheral interface

TIM1_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIM1_EGR

CC1G

Output mode
CNT>CCR1

CNT=CCR1 controller

TIMx_CCMR1

OC1M[2:0]

OC1REF

OC1CE

Dead-time
generator

OC1_DT

OC1N_DT

DTG[7:0]

TIMx_BDTR

‘0’

‘0’

CC1E

TIMx_CCER

CC1NE

0

1

CC1P

TIMx_CCER

0

1

CC1NP

TIMx_CCER

Output
enable
circuit

OC1

Output
enable
circuit

OC1N

CC1E TIMx_CCERCC1NE

OSSI TIMx_BDTRMOE OSSR

0x

10

11

11

01

x0

ai17333b

Output mode
CNT > CCR2

CNT = CCR2 controller

TIM15_CCMR2

OC2M[2:0]

OC2_REF

0

1

CC2P

TIM15_CCER

Output
enable
circuit

OC2

CC2E TIM15_CCER

OSSI TIM15_BDTRMOE

To the master mode
controller

TIM15_CR2OIS2

ai17334

General-purpose timers (TIM15/16/17) RM0041

402/709 RM0041 Rev 6

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

15.4.6 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written it to ‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must five internal
clock cycles. We must program a filter duration longer than these five clock cycles. We
can validate a transition on TI1 when 8 consecutive samples with the new level have
been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

RM0041 Rev 6 403/709

RM0041 General-purpose timers (TIM15/16/17)

455

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

15.4.7 PWM input mode (only for TIM15)

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, user can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 175. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM15/16/17) RM0041

404/709 RM0041 Rev 6

15.4.8 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.

15.4.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

RM0041 Rev 6 405/709

RM0041 General-purpose timers (TIM15/16/17)

455

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = 0 to disable preload register

– Write CCxP = 0 to select active high polarity

– Write CCxE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 151.

Figure 176. Output compare mode, toggle on OC1.

15.4.10 PWM mode

Pulse Width Modulation mode allows the user to generate a signal with a frequency
determined by the value of the TIMx_ARR register and a duty cycle determined by the value
of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. Enable the corresponding preload register by setting the OCxPE bit
in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the
ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, initialize all the registers by setting the UG bit in the
TIMx_EGR register.

oc1ref=OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

General-purpose timers (TIM15/16/17) RM0041

406/709 RM0041 Rev 6

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

• Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the
Upcounting mode on page 347.

In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the
compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 152 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.

Figure 177. Edge-aligned PWM waveforms (ARR=8)

• Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the
Repetition counter on page 397

In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.

Counter register

‚Äò

0 1 2 3 4 5 6 7 8 0 1

‚Äò

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

RM0041 Rev 6 407/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.4.11 Complementary outputs and dead-time insertion

The TIM15/16/17 general-purpose timers can output one complementary signal and
manage the switching-off and switching-on of the outputs.

This time is generally known as dead-time and must be adjusted depending on the devices
connected to the outputs and their characteristics (intrinsic delays of level-shifters, delays
due to power switches...)

The polarity of the outputs (main output OCx or complementary OCxN) can be selected
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 80
on page 428 for more details. In particular, the dead-time is activated when switching to the
IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 8-bit field named DTG[7:0] in the TIMx_BDTR register
used to control the dead-time generation for all channels. From a reference waveform
OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high:

• the OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge

• the OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples).

Figure 178. Complementary output with dead-time insertion.

Figure 179. Dead-time waveforms with delay greater than the negative pulse.

delay

delay

OCxREF

OCx

OCxN

delay

OCxREF

OCx

OCxN

General-purpose timers (TIM15/16/17) RM0041

408/709 RM0041 Rev 6

Figure 180. Dead-time waveforms with delay greater than the positive pulse.

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 15.5.15: TIM15 break and dead-time
register (TIM15_BDTR) on page 431 for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows the user to send a specific waveform (such as PWM or static active level) on
one output while the complementary remains at its inactive level. Other alternative
possibilities are to have both outputs at inactive level or both outputs active and
complementary with dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.

15.4.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register,
OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 80: Output control bits for
complementary OCx and OCxN channels with break feature on page 428 for more details.

The break source can be either the break input pin or a clock failure event, generated by the
Clock Security System (CSS), from the Reset Clock Controller. For further information on
the Clock Security System, refer to Section 6.2.7: Clock security system (CSS).

When exiting from reset, the break circuit is disabled and the MOE bit is low. Enable the
break function by setting the BKE bit in the TIMx_BDTR register. The break input polarity
can be selected by configuring the BKP bit in the same register. BKE and BKP can be
modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB clock
cycle is applied before the writing is effective. Consequently, it is necessary to wait one APB
clock period to correctly read back the bit after the write operation.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if user writes MOE to 1 whereas it was low, a

delay

OCxREF

OCx

OCxN

RM0041 Rev 6 409/709

RM0041 General-purpose timers (TIM15/16/17)

455

delay (dummy instruction) must be inserted before reading it correctly. This is because user
writes the asynchronous signal and reads the synchronous signal.

When a break occurs (selected level on the break input):

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

• Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

• When complementary outputs are used:

– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs
remain or become high as soon as one of the CCxE or CCxNE bits is high.

• The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be
generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if
the BDE bit in the TIMx_DIER register is set.

• If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until user writes it to ‘1’ again. In this case, it can be used for
security and user can connect the break input to an alarm from power drivers, thermal
sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot
be cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows the user to freeze
the configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). User can choose from
three levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to
Section 15.5.15: TIM15 break and dead-time register (TIM15_BDTR) on page 431. The
LOCK bits can be written only once after an MCU reset.

The Figure 181 shows an example of behavior of the outputs in response to a break.

General-purpose timers (TIM15/16/17) RM0041

410/709 RM0041 Rev 6

Figure 181. Output behavior in response to a break.

delay

OCxREF

BREAK (MOE

OCx
(OCxN not implemented, CCxP=0, OISx=1)

OCx
(OCxN not implemented, CCxP=0, OISx=0)

OCx
(OCxN not implemented, CCxP=1, OISx=1)

OCx
(OCxN not implemented, CCxP=1, OISx=0)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN=1)

delaydelay

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN=1)

delaydelay

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN=1)

)

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN=0)

OCx

OCxN
(CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=OISxN=0 or OISx=OISxN=1)

RM0041 Rev 6 411/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.4.13 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

• In downcounting: CNT > CCRx

Figure 182. Example of one pulse mode.

For example user may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=’0’ in the TIMx_CCER register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY
tPULSE

General-purpose timers (TIM15/16/17) RM0041

412/709 RM0041 Rev 6

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let’s say user wants to build a waveform with a transition from ‘0’ to ‘1’ when a
compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the
auto-reload value. To do this enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. User can optionally enable the preload registers by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case user has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

User only wants one pulse, so write ‘1’ in the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If user wants to output a waveform with the minimum delay, set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

RM0041 Rev 6 413/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.4.14 TIM15 and external trigger synchronization (only for TIM15)

The TIM15 timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so no need to configure it. The CC1S bits select the
input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 in
TIMx_CCER register to validate the polarity (and detect rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 183. Control circuit in reset mode

00

 Counter clock = ck_cnt = ck_psc

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

General-purpose timers (TIM15/16/17) RM0041

414/709 RM0041 Rev 6

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so no need to configure it. The CC1S bits select the
input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 in
TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 184. Control circuit in gated mode

 Counter clock = ck_cnt = ck_psc

Counter register 35 36 37 3832 33 34

TI1

3130

cnt_en

TIF

Write TIF=0

RM0041 Rev 6 415/709

RM0041 General-purpose timers (TIM15/16/17)

455

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so no need to configure it. The CC2S bits are
configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register.
Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level
only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 185. Control circuit in trigger mode

15.4.15 Timer synchronization

The TIM timers are linked together internally for timer synchronization or chaining. Refer to
Section 13.3.15: Timer synchronization on page 316 for details.

Note: The clock of the slave timer must be enabled prior to receiving events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

15.4.16 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 25.15.2: Debug support for timers,
watchdog and I2C.

15.5 TIM15 registers

Refer to Section 1.1: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

 Counter clock = ck_cnt = ck_psc

Counter register 35 36 37 3834

TI2

cnt_en

TIF

General-purpose timers (TIM15/16/17) RM0041

416/709 RM0041 Rev 6

15.5.1 TIM15 control register 1 (TIM15_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bitfield indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS) used by the dead-time generators and the digital filters
(TIx)
00: tDTS = tCK_INT
01: tDTS = 2*tCK_INT
10: tDTS = 4*tCK_INT
11: Reserved, do not program this value

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt if enabled. These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt if enabled

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock and gated mode can work only if the CEN bit has been previously set by
software. However trigger mode can set the CEN bit automatically by hardware.

RM0041 Rev 6 417/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.2 TIM15 control register 2 (TIM15_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OIS2 OIS1N OIS1

Res.
MMS[2:0] CCDS CCUS

Res.
CCPC

rw rw rw rw rw rw rw rw rw

Bit 15:11 Reserved, must be kept at reset value.

Bit 10 OIS2: Output idle state 2 (OC2 output)

0: OC2=0 when MOE=0
1: OC2=1 when MOE=0

Note: This bit cannot be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIMx_BKR register).

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 MMS[1:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).
101: Compare - OC2REF signal is used as trigger output (TRGO).

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

General-purpose timers (TIM15/16/17) RM0041

418/709 RM0041 Rev 6

15.5.3 TIM15 slave mode control register (TIM15_SMCR)

Address offset: 0x08

Reset value: 0x0000

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when COM bit is set.

Note: This bit acts only on channels that have a complementary output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MSM TS[2:0]

Res.
SMS[2:0]

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 MSM: Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

RM0041 Rev 6 419/709

RM0041 General-purpose timers (TIM15/16/17)

455

Bits 6:4 TS[2:0]: Trigger selection

This bitfield selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
See Table 79: TIMx Internal trigger connection on page 419 for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.

Table 79. TIMx Internal trigger connection

Slave TIM ITR0 (TS = 000)(1)

1. ITR0 and ITR1 triggers available only in high density value line devices.

ITR1 (TS = 001)(1) ITR2 (TS = 010) ITR3 (TS = 011)

TIM15 TIM2 TIM3 TIM16_OC TIM17_OC

General-purpose timers (TIM15/16/17) RM0041

420/709 RM0041 Rev 6

15.5.4 TIM15 DMA/interrupt enable register (TIM15_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Reserved
CC2DE CC1DE UDE BIE TIE COMIE

Reserved
CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bits 13:11 Reserved, must be kept at reset value.

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled
1: Break interrupt enabled

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled
1: COM interrupt enabled

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

RM0041 Rev 6 421/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.5 TIM15 status register (TIM15_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2OF CC1OF

Res.
BIF TIF COMIF

Reserved
CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CC2OF: Capture/Compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred
1: An active level has been detected on the break input

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode, both edges in case gated
mode is selected). It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on a COM event (once the capture/compare control bits –CCxE,
CCxNE, OCxM– have been updated). It is cleared by software.
0: No COM event occurred
1: COM interrupt pending

Bits 5:3 Reserved, must be kept at reset value.

General-purpose timers (TIM15/16/17) RM0041

422/709 RM0041 Rev 6

15.5.6 TIM15 event generation register (TIM15_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/down-counting modes) or
underflow (in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow regarding the repetition counter value (update if repetition counter = 0) and if the
UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to Section 15.5.3: TIM15 slave mode
control register (TIM15_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BG TG COMG

Reserved
CC2G CC1G UG

w w rw w w w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled

RM0041 Rev 6 423/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.7 TIM15 capture/compare mode register 1 (TIM15_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. Take care that the same bit can have a
different meaning for the input stage and for the output stage.

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels that have a complementary output.

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 CC2G: Capture/Compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res OC2M[2:0]
OC2
PE

OC2
FE CC2S[1:0]

Res OC1M[2:0]
OC1
PE

OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

424/709 RM0041 Rev 6

Output compare mode:

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC2M[2:0]: Output Compare 2 mode

Bit 11 OC2PE: Output Compare 2 preload enable

Bit 10 OC2FE: Output Compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 OC1M: Output Compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

RM0041 Rev 6 425/709

RM0041 General-purpose timers (TIM15/16/17)

455

Input capture mode

Bit 3 OC1PE: Output Compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK
bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output).

Bit 2 OC1FE: Output Compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is
set to the compare level independently of the result of the comparison. Delay to sample the
trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the
channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

General-purpose timers (TIM15/16/17) RM0041

426/709 RM0041 Rev 6

15.5.8 TIM15 capture/compare enable register (TIM15_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1NP

Res;
CC2P CC2E CC1NP CC1NE CC1P CC1E

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 complementary output polarity

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

RM0041 Rev 6 427/709

RM0041 General-purpose timers (TIM15/16/17)

455

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output polarity

0: OC1N active high
1: OC1N active low

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output).

Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1NP/CC1P bits select the polarity of TI1FP1 and TI2FP1 for trigger or capture
operations.
00: noninverted/rising edge: circuit is sensitive to TIxFP1's rising edge (capture, trigger in
reset or trigger mode), TIxFP1 is not inverted (trigger in gated mode).
01: inverted/falling edge: circuit is sensitive to TIxFP1's falling edge (capture, trigger in reset,
or trigger mode), TIxFP1 is inverted (trigger in gated mode).
10: reserved, do not use this configuration.
11: noninverted/both edges: circuit is sensitive to both the rising and falling edges of TIxFP1
(capture, trigger in reset or trigger mode), TIxFP1 is not inverted (trigger in gated mode).

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register)..

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

General-purpose timers (TIM15/16/17) RM0041

428/709 RM0041 Rev 6

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIO and AFIO registers.

Table 80. Output control bits for complementary OCx and OCxN channels with break feature

Control bits Output states(1)

MOE bit OSSI bit
OSSR

bit
CCxE bit CCxNE bit OCx output state OCxN output state

1 X

0 0 0
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 0 1
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

OCxREF + Polarity
OCxN=OCxREF xor CCxNP,
OCxN_EN=1

0 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

1 0 0
Output Disabled (not
driven by the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=CCxNP, OCxN_EN=0

1 0 1
Off-State (output enabled
with inactive state)

OCx=CCxP, OCx_EN=1

OCxREF + Polarity

OCxN=OCxREF xor CCxNP,
OCxN_EN=1

1 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Off-State (output enabled with
inactive state)

OCxN=CCxNP, OCxN_EN=1

1 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

0

0

X

0 0 Output Disabled (not driven by the timer)

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,
OCxN_EN=0

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state.

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1 Off-State (output enabled with inactive state)

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,
OCxN_EN=1

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state

1 1 0

1 1 1

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept
cleared.

RM0041 Rev 6 429/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.9 TIM15 counter (TIM15_CNT)

Address offset: 0x24

Reset value: 0x0000

15.5.10 TIM15 prescaler (TIM15_PSC)

Address offset: 0x28

Reset value: 0x0000

15.5.11 TIM15 auto-reload register (TIM15_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through trigger
controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 14.3.1: Time-base unit on page 345 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM15/16/17) RM0041

430/709 RM0041 Rev 6

15.5.12 TIM15 repetition counter register (TIM15_RCR)

Address offset: 0x30

Reset value: 0x0000

15.5.13 TIM15 capture/compare register 1 (TIM15_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
REP[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.

Each time the REP_CNT related downcounter reaches zero, an update event is generated
and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the
repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until
the next repetition update event.

It means in PWM mode (REP+1) corresponds to the number of PWM periods in edge-aligned
mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1 is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

RM0041 Rev 6 431/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.14 TIM15 capture/compare register 2 (TIM15_CCR2)

Address offset: 0x38

Reset value: 0x0000

15.5.15 TIM15 break and dead-time register (TIM15_BDTR)

Address offset: 0x44

Reset value: 0x0000

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on
the LOCK configuration, it can be necessary to configure all of them during the first write
access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

432/709 RM0041 Rev 6

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set
by software or automatically depending on the AOE bit. It is acting only on the channels
which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register)
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is
not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 13 BKP: Break polarity

0: Break input BRK is active low
1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

0: Break inputs (BRK and CSS clock failure event) disabled
1; Break inputs (BRK and CSS clock failure event) enabled

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented
in the timer.
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

RM0041 Rev 6 433/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.5.16 TIM15 DMA control register (TIM15_DCR)

Address offset: 0x48

Reset value: 0x0000

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)
1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or
CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 µs to 31750 ns by 250 ns steps,
32 µs to 63 µs by 1 µs steps,
64 µs to 126 µs by 2 µs steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DBL[4:0] Reserved DBA[4:0]

Res. rw rw rw rw rw Res. rw rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

434/709 RM0041 Rev 6

15.5.17 TIM15 DMA address for full transfer (TIM15_DMAR)

Address offset: 0x4C

Reset value: 0x0000

15.5.18 TIM15 register map

TIM15 registers are mapped as 16-bit addressable registers as described in the table
below:

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

RM0041 Rev 6 435/709

RM0041 General-purpose timers (TIM15/16/17)

455

Table 81. TIM15 register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIM15_CR1

Reserved

CKD
[1:0] A

R
P

E

Reserved O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x04
TIM15_CR2

Reserved O
IS

2

O
IS

1
N

O
IS

1

T
I1

S

MMS[2:0]

C
C

D
S

C
C

U
S

R
e

se
rv

e
d

C
C

P
C

Reset value 0 0 0 0 0 0 0 0 0 0

0x08
TIM15_SMCR

Reserved M
S

M

TS[2:0]

R
e

se
rv

ed SMS[2:0]

Reset value 0 0 0 0 0 0 0

0x0C
TIM15_DIER

Reserved T
D

E

R
e

se
rv

e
d

C
C

2
D

E

C
C

1
D

E

U
D

E

B
IE

T
IE

C
O

M
IE

R
e

se
rv

e
d

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0

0x10
TIM15_SR

Reserved C
C

2O
F

C
C

1O
F

R
e

se
rv

e
d

B
IF

T
IF

C
O

M
IF

R
e

se
rv

e
d

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0

0x14
TIM15_EGR

Reserved

B
G

T
G

C
O

M
G

R
e

se
rv

ed

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0

0x18

TIM15_CCMR1
Output

Compare mode Reserved

OC2M
[2:0]

O
C

2
P

E

O
C

2
F

E

CC2S
[1:0]

R
e

se
rv

ed OC1M
[2:0]

O
C

1
P

E

O
C

1
F

E CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIM15_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIM15_CCER

Reserved C
C

2N
P

R
es

er
ve

d

C
C

2P

C
C

2E

C
C

1N
P

C
C

1N
E

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0

0x24
TIM15_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIM15_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIM15_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

General-purpose timers (TIM15/16/17) RM0041

436/709 RM0041 Rev 6

Refer to Section 2.3: Memory map for the register boundary addresses.

0x30
TIM15_RCR

Reserved
REP[7:0]

Reset value 0 0 0 0 0 0 0 0

0x34
TIM15_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIM15_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
TIM15_BDTR

Reserved M
O

E

A
O

E

B
K

P

B
K

E

O
S

S
R

O
S

S
I

LOCK
[1:0]

DT[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
TIM15_DCR

Reserved
DBL[4:0]

Reserved
DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIM15_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 81. TIM15 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0041 Rev 6 437/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.6 TIM16&TIM17 registers

Refer toSection 1.1: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

15.6.1 TIM16&TIM17 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
(TIx),
00: tDTS=tCK_INT
01: tDTS=2*tCK_INT
10: tDTS=4*tCK_INT
11: Reserved, do not program this value

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

General-purpose timers (TIM15/16/17) RM0041

438/709 RM0041 Rev 6

15.6.2 TIM16&TIM17 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock and gated mode can work only if the CEN bit has been previously set by
software. However trigger mode can set the CEN bit automatically by hardware.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OIS1N OIS1

Reserved
CCDS CCUS

Res.
CCPC

rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bits 7:4 Reserved, must be kept at reset value.

RM0041 Rev 6 439/709

RM0041 General-purpose timers (TIM15/16/17)

455

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when COM bit is set.

Note: This bit acts only on channels that have a complementary output.

General-purpose timers (TIM15/16/17) RM0041

440/709 RM0041 Rev 6

15.6.3 TIM16&TIM17 DMA/interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Reserved
CC1DE UDE BIE TIE COMIE

Reserved
CC1IE UIE

rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bist 13:10 Reserved, must be kept at reset value.

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled
1: Break interrupt enabled

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled
1: COM interrupt enabled

Bits 4:2 Reserved, must be kept at reset value.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

RM0041 Rev 6 441/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.6.4 TIM16&TIM17 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1OF

Res.
BIF TIF COMIF

Reserved
CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred
1: An active level has been detected on the break input

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode, both edges in case gated
mode is selected). It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on a COM event (once the capture/compare control bits –CCxE,
CCxNE, OCxM– have been updated). It is cleared by software.
0: No COM event occurred
1: COM interrupt pending

General-purpose timers (TIM15/16/17) RM0041

442/709 RM0041 Rev 6

15.6.5 TIM16&TIM17 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bits 4:2 Reserved, must be kept at reset value.

Bit 1 CC1IF: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/down-counting modes) or
underflow (in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow regarding the repetition counter value (update if repetition counter = 0)
and if the UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if
URS=0 and UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to Section 15.5.3: TIM15 slave
mode control register (TIM15_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1
register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BG TG COMG

Reserved
CC1G UG

w w w w w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

RM0041 Rev 6 443/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.6.6 TIM16&TIM17 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. Take care that the same bit can have a
different meaning for the input stage and for the output stage.

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels that have a complementary output.

Bits 4:2 Reserved, must be kept at reset value.

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Res OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

444/709 RM0041 Rev 6

Output compare mode:

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 OC1M: Output Compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 else inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output Compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK
bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output).

Bit 2 OC1FE: Output Compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently of the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

RM0041 Rev 6 445/709

RM0041 General-purpose timers (TIM15/16/17)

455

Input capture mode

15.6.7 TIM16&TIM17 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N consecutive events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1NP CC1NE CC1P CC1E

rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

446/709 RM0041 Rev 6

Bits 15:4 Reserved, must be kept at reset value.

Bit 3 CC1NP: Capture/Compare 1 complementary output polarity

0: OC1N active high
1: OC1N active low

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output).

Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1NP/CC1P bits select the polarity of TI1FP1 and TI2FP1 for capture operation.
00: Non-inverted/rising edge: circuit is sensitive to TIxFP1's rising edge TIxFP1 is not
inverted.
01: Inverted/falling edge: circuit is sensitive to TIxFP1's falling edge, TIxFP1 is inverted.
10: Reserved, do not use this configuration.
11: Non-inverted/both edges: circuit is sensitive to both the rising and falling edges of
TIxFP1, TIxFP1 is not inverted.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register)

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

RM0041 Rev 6 447/709

RM0041 General-purpose timers (TIM15/16/17)

455

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIO and AFIO registers.

Table 82. Output control bits for complementary OCx and OCxN channels with break
feature

Control bits Output states(1)

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP
bits must be kept cleared.

MOE
bit

OSSI
bit

OSSR
bit

CCxE
bit

CCxNE
bit

OCx output state OCxN output state

1 X

0 0 0
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 0 1
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

OCxREF + Polarity
OCxN=OCxREF xor CCxNP,
OCxN_EN=1

0 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

1 0 0
Output Disabled (not
driven by the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=CCxNP, OCxN_EN=0

1 0 1
Off-State (output enabled
with inactive state)

OCx=CCxP, OCx_EN=1

OCxREF + Polarity

OCxN=OCxREF xor CCxNP,
OCxN_EN=1

1 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Off-State (output enabled with
inactive state)

OCxN=CCxNP, OCxN_EN=1

1 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

0

0

X

0 0 Output Disabled (not driven by the timer)

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,
OCxN_EN=0

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state.

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1 Off-State (output enabled with inactive state)

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,
OCxN_EN=1

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state

1 1 0

1 1 1

General-purpose timers (TIM15/16/17) RM0041

448/709 RM0041 Rev 6

15.6.8 TIM16&TIM17 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15.6.9 TIM16&TIM17 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15.6.10 TIM16&TIM17 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through trigger
controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 14.3.1: Time-base unit on page 345 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

RM0041 Rev 6 449/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.6.11 TIM16&TIM17 repetition counter register (TIMx_RCR)

Address offset: 0x30

Reset value: 0x0000

15.6.12 TIM16&TIM17 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
REP[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.

Each time the REP_CNT related downcounter reaches zero, an update event is generated
and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the
repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until
the next repetition update event.

It means in PWM mode (REP+1) corresponds to the number of PWM periods in edge-aligned
mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1 is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1
register is read-only and cannot be programmed.

General-purpose timers (TIM15/16/17) RM0041

450/709 RM0041 Rev 6

15.6.13 TIM16&TIM17 break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on
the LOCK configuration, it can be necessary to configure all of them during the first write
access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set
by software or automatically depending on the AOE bit. It is acting only on the channels
which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register)
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is
not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 13 BKP: Break polarity

0: Break input BRK is active low
1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

0: Break inputs (BRK and CSS clock failure event) disabled
1; Break inputs (BRK and CSS clock failure event) enabled

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented
in the timer.
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

RM0041 Rev 6 451/709

RM0041 General-purpose timers (TIM15/16/17)

455

15.6.14 TIM16&TIM17 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.
See OC/OCN enable description for more details (Section 15.5.8: TIM15 capture/compare
enable register (TIM15_CCER) on page 426).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)
1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or
CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 µs to 31750 ns by 250 ns steps,
32 µs to 63 µs by 1 µs steps,
64 µs to 126 µs by 2 µs steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

General-purpose timers (TIM15/16/17) RM0041

452/709 RM0041 Rev 6

15.6.15 TIM16&TIM17 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address), i.e. the number of
transfers. Transfers can be in half-words or in bytes (see example below).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In
this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address..

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write access to the DMAR register accesses the register located at the address:

“(TIMx_CR1 address) + DBA + (DMA index)” in which:

TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address
configured in TIMx_DCR register, DMA index is the offset automatically controlled by the
DMA transfer, depending on the length of the transfer DBL in the TIMx_DCR register.

RM0041 Rev 6 453/709

RM0041 General-purpose timers (TIM15/16/17)

455

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

General-purpose timers (TIM15/16/17) RM0041

454/709 RM0041 Rev 6

15.6.16 TIM16&TIM17 register map

TIM16&TIM17 registers are mapped as 16-bit addressable registers as described in the
table below:

Table 83. TIM16&TIM17 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0] A

R
P

E

Reserved O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved O
IS

1
N

O
IS

1

T
I1

S

MMS[2:0]

C
C

D
S

C
C

U
S

R
es

er
ve

d

C
C

P
C

Reset value 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

Reserved C
C

1D
E

U
D

E

B
IE

T
IE

Reserved C
C

1
IE

U
IE

Reset value 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved C
C

1O
F

R
es

er
ve

d

B
IF

T
IF

Reserved C
C

1I
F

U
IF

Reset value 0 0 0 0 0

0x14
TIMx_EGR

Reserved

B
G

T
G

C
O

M
G

Reserve
d

C
C

1
G

U
G

Reset value 0 0 0 0 0

0x18

TIMx_CCMR1
Output

Compare mode Reserved

OC1M
[2:0]

O
C

1P
E

O
C

1
F

E CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode Reserved
IC1F[3:0]

IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved C
C

1
N

P

C
C

1
N

E

C
C

1
P

C
C

1
E

Reset value 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM0041 Rev 6 455/709

RM0041 General-purpose timers (TIM15/16/17)

455

Refer to Section 3.3: Memory map for the register boundary addresses.

0x30
TIMx_RCR

Reserved
REP[7:0]

Reset value 0 0 0 0 0 0 0 0

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
TIMx_BDTR

Reserved M
O

E

A
O

E

B
K

P

B
K

E

O
S

S
R

O
S

S
I

LOCK
[1:0]

DT[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
TIMx_DCR

Reserved
DBL[4:0] Reserve

d

DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 83. TIM16&TIM17 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Basic timers (TIM6 and TIM7) RM0041

456/709 RM0041 Rev 6

16 Basic timers (TIM6 and TIM7)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

16.1 TIM6 and TIM7 introduction

The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

16.2 TIM6 and TIM7 main features

Basic timer (TIM6 and TIM7) features include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• Synchronization circuit to trigger the DAC

• Interrupt/DMA generation on the update event: counter overflow

RM0041 Rev 6 457/709

RM0041 Basic timers (TIM6 and TIM7)

468

Figure 186. Basic timer block diagram

16.3 TIM6 and TIM7 functional description

16.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-Reload register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

U

Trigger
controller

Stop, Clear or up

TRGO

U

UI

Reset, Enable, Count,

event

Preload registers transferred
to active registers on U event according to control bit

interrupt & DMA output

to DAC

COUNTER
CK_PSC CNTCK_CNT

Controller

Internal clock (CK_INT)
TIMxCLK from RCC

±Prescaler
PSC

Auto-reload Register

Flag

ai14749b

Basic timers (TIM6 and TIM7) RM0041

458/709 RM0041 Rev 6

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 187 and Figure 188 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

Figure 187. Counter timing diagram with prescaler division change from 1 to 2

CK_PSC

00

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V3

RM0041 Rev 6 459/709

RM0041 Basic timers (TIM6 and TIM7)

468

Figure 188. Counter timing diagram with prescaler division change from 1 to 4

16.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

0

30

0 1 2 3 0 1 2 3

MS31077V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

Basic timers (TIM6 and TIM7) RM0041

460/709 RM0041 Rev 6

Figure 189. Counter timing diagram, internal clock divided by 1

Figure 190. Counter timing diagram, internal clock divided by 2

MS37364V1

00 02 03 04 05 06 0733 34 35 3631

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0132

MS35835V1

CK_INT

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0034 0035 0036 0000 0001 0002 0003

RM0041 Rev 6 461/709

RM0041 Basic timers (TIM6 and TIM7)

468

Figure 191. Counter timing diagram, internal clock divided by 4

Figure 192. Counter timing diagram, internal clock divided by N

Figure 193. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

0000 00010035 0036

MSv37301V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CNT_EN

MSv37302V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

001F 20

FF 36

MSv37303V1

CK_INT

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CNT_EN

Auto-reload register

Write a new value in TIMx_ARR

Basic timers (TIM6 and TIM7) RM0041

462/709 RM0041 Rev 6

Figure 194. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

16.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 195 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 195. Control circuit in normal mode, internal clock divided by 1

MSv37304V1

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CNT_EN

Auto-reload preload register

Write a new value in TIMx_ARR

Auto-reload shadow register F5 36

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

RM0041 Rev 6 463/709

RM0041 Basic timers (TIM6 and TIM7)

468

16.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex®-M3 core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 25.15.2: Debug
support for timers, watchdog and I2C.

16.4 TIM6 and TIM7 registers

Refer to Section 2.2 for a list of abbreviations used in register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

16.4.1 TIM6 and TIM7 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Basic timers (TIM6 and TIM7) RM0041

464/709 RM0041 Rev 6

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software. However
trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0041 Rev 6 465/709

RM0041 Basic timers (TIM6 and TIM7)

468

16.4.2 TIM6 and TIM7 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

16.4.3 TIM6 and TIM7 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS[2:0]: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bits 3:0 Reserved, must be kept at reset value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDE

Reserved
UIE

rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

Basic timers (TIM6 and TIM7) RM0041

466/709 RM0041 Rev 6

16.4.4 TIM6 and TIM7 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

16.4.5 TIM6 and TIM7 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

16.4.6 TIM6 and TIM7 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow and if UDIS = 0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

RM0041 Rev 6 467/709

RM0041 Basic timers (TIM6 and TIM7)

468

16.4.7 TIM6 and TIM7 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

16.4.8 TIM6 and TIM7 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 16.3.1: Time-base unit for more details about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

Basic timers (TIM6 and TIM7) RM0041

468/709 RM0041 Rev 6

16.4.9 TIM6 and TIM7 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below.

Refer to for the register boundary addresses.

Table 84. TIM6 and TIM7 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved A
R

P
E

R
es

er
ve

d

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

R
e

se
rv

e
d

Reset value 0 0 0

0x08 Reserved

0x0C
TIMx_DIER

Reserved U
D

E

R
e

se
rv

e
d

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved U
IF

Reset value 0

0x14
TIMx_EGR

Reserved U
G

Reset value 0

0x18 Reserved

0x1C Reserved

0x20 Reserved

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM0041 Rev 6 469/709

RM0041 Real-time clock (RTC)

480

17 Real-time clock (RTC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

17.1 RTC introduction

The real-time clock is an independent timer. The RTC provides a set of continuously running
counters which can be used, with suitable software, to provide a clock-calendar function.
The counter values can be written to set the current time/date of the system.

The RTC core and clock configuration (RCC_BDCR register) are in the Backup domain,
which means that RTC setting and time are kept after reset or wakeup from Standby mode.

After reset, access to the Backup registers and RTC is disabled and the Backup domain
(BKP) is protected against possible parasitic write access. To enable access to the Backup
registers and the RTC, proceed as follows:

• enable the power and backup interface clocks by setting the PWREN and BKPEN bits
in the RCC_APB1ENR register

• set the DBP bit the Power Control register (PWR_CR) to enable access to the Backup
registers and RTC.

Real-time clock (RTC) RM0041

470/709 RM0041 Rev 6

17.2 RTC main features

• Programmable prescaler: division factor up to 220

• 32-bit programmable counter for long-term measurement

• Two separate clocks: PCLK1 for the APB1 interface and RTC clock (must be at least
four times slower than the PCLK1 clock)

• The RTC clock source could be any of the following ones:

– HSE clock divided by 128

– LSE oscillator clock

– LSI oscillator clock (refer to Section 6.2.8: RTC clock for details)

• Two separate reset types:

– The APB1 interface is reset by system reset

– The RTC Core (Prescaler, Alarm, Counter and Divider) is reset only by a Backup
domain reset (see Section 6.1.3: Backup domain reset on page 72).

• Three dedicated maskable interrupt lines:

– Alarm interrupt, for generating a software programmable alarm interrupt.

– Seconds interrupt, for generating a periodic interrupt signal with a programmable
period length (up to 1 second).

– Overflow interrupt, to detect when the internal programmable counter rolls over to
zero.

RM0041 Rev 6 471/709

RM0041 Real-time clock (RTC)

480

17.3 RTC functional description

17.3.1 Overview

The RTC consists of two main units (see Figure 196). The first one (APB1 Interface) is used
to interface with the APB1 bus. This unit also contains a set of 16-bit registers accessible
from the APB1 bus in read or write mode (for more information refer to Section 17.4: RTC
registers). The APB1 interface is clocked by the APB1 bus clock in order to interface with
the APB1 bus.

The other unit (RTC Core) consists of a chain of programmable counters made of two main
blocks. The first block is the RTC prescaler block, which generates the RTC time base
TR_CLK that can be programmed to have a period of up to 1 second. It includes a 20-bit
programmable divider (RTC Prescaler). Every TR_CLK period, the RTC generates an
interrupt (Second Interrupt) if it is enabled in the RTC_CR register. The second block is a
32-bit programmable counter that can be initialized to the current system time. The system
time is incremented at the TR_CLK rate and compared with a programmable date (stored in
the RTC_ALR register) in order to generate an alarm interrupt, if enabled in the RTC_CR
control register.

Figure 196. RTC simplified block diagram

32-bit programmable

=

Reload

APB1 interface

APB1 bus

NVIC interrupt
controller

OWF
rising
edge

counter

OWIE

SECF

SECIE

ALRF

ALRIE

Standby mode
exit

powered in Standby

powered in Standby

not powered in Standby

not powered in Standby

powered in Standby

not powered in Standby

Backup domain

RTC_PRL

RTC_DIV RTC_CNT

ai14969b

PCLK1

RTCCLK

RTC_CR

RTC_ALR

WKUP pin
WKP_STDBY

RTC_Alarm

RTC_Alarm

RTC_Overflow

RTC_Second

TR_CLK

RTC prescaler

Real-time clock (RTC) RM0041

472/709 RM0041 Rev 6

17.3.2 Resetting RTC registers

All system registers are asynchronously reset by a System Reset or Power Reset, except
for RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV.

The RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV registers are reset only by a Backup
Domain reset. Refer to Section 6.1.3: Backup domain reset.

17.3.3 Reading RTC registers

The RTC core is completely independent from the RTC APB1 interface.

Software accesses the RTC prescaler, counter and alarm values through the APB1
interface but the associated readable registers are internally updated at each rising edge of
the RTC clock resynchronized by the RTC APB1 clock. This is also true for the RTC flags.

This means that the first read to the RTC APB1 registers may be corrupted (generally read
as 0) if the APB1 interface has previously been disabled and the read occurs immediately
after the APB1 interface is enabled but before the first internal update of the registers. This
can occur if:

• A system reset or power reset has occurred

• The MCU has just woken up from Standby mode (see Section 4.3: Low-power modes)

• The MCU has just woken up from Stop mode (see Section 4.3: Low-power modes)

In all the above cases, the RTC core has been kept running while the APB1 interface was
disabled (reset, not clocked or unpowered).

Consequently when reading the RTC registers, after having disabled the RTC APB1
interface, the software must first wait for the RSF bit (Register Synchronized Flag) in the
RTC_CRL register to be set by hardware.

Note that the RTC APB1 interface is not affected by WFI and WFE low-power modes.

17.3.4 Configuring RTC registers

To write in the RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter
Configuration mode. This is done by setting the CNF bit in the RTC_CRL register.

In addition, writing to any RTC register is only enabled if the previous write operation is
finished. To enable the software to detect this situation, the RTOFF status bit is provided in
the RTC_CR register to indicate that an update of the registers is in progress. A new value
can be written to the RTC registers only when the RTOFF status bit value is ’1’.

Configuration procedure

1. Poll RTOFF, wait until its value goes to ‘1’

2. Set the CNF bit to enter configuration mode

3. Write to one or more RTC registers

4. Clear the CNF bit to exit configuration mode

5. Poll RTOFF, wait until its value goes to ‘1’ to check the end of the write operation.

The write operation only executes when the CNF bit is cleared; it takes at least three
RTCCLK cycles to complete.

RM0041 Rev 6 473/709

RM0041 Real-time clock (RTC)

480

17.3.5 RTC flag assertion

The RTC Second flag (SECF) is asserted on each RTC Core clock cycle before the update
of the RTC Counter.

The RTC Overflow flag (OWF) is asserted on the last RTC Core clock cycle before the
counter reaches 0x0000.

The RTC_Alarm and RTC Alarm flag (ALRF) (see Figure 197) are asserted on the last RTC
Core clock cycle before the counter reaches the RTC Alarm value stored in the Alarm
register increased by one (RTC_ALR + 1). The write operation in the RTC Alarm and RTC
Second flag must be synchronized by using one of the following sequences:

• Use the RTC Alarm interrupt and inside the RTC interrupt routine, the RTC Alarm
and/or RTC Counter registers are updated.

• Wait for SECF bit to be set in the RTC Control register. Update the RTC Alarm and/or
the RTC Counter register.

Figure 197. RTC second and alarm waveform example with PR=0003, ALARM=00004

Figure 198. RTC overflow waveform example with PR=0003

RTC_CNT 0000 0001

RTC_PR 0002 0001 0000 0003 0002 0001 0000 0003

0002

RTC_ALARM

0002 0001 0000 0003

0003

0002 0001 0000 0003

0004

0002 0001 0000 0003

ALRF can be cleared by software

RTC_Second

RTCCLK

0005

0002 0001 0000 0003

(not powered
in Standby)

1 RTCCLK

RTC_CNT FFFFFFFB FFFFFFFC

RTC_PR 0002 0001 0000 0003 0002 0001 0000 0003

FFFFFFFD

RTC_Overflow

0002 0001 0000 0003

FFFFFFFE

0002 0001 0000 0003

FFFFFFFF

0002 0001 0000 0003

OWF can be cleared by software

RTC_Second

RTCCLK

0000

0002 0001 0000 0003

(not powered
in Standby)

1 RTCCLK

Real-time clock (RTC) RM0041

474/709 RM0041 Rev 6

17.4 RTC registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

17.4.1 RTC control register high (RTC_CRH)

Address offset: 0x00
Reset value: 0x0000

These bits are used to mask interrupt requests. Note that at reset all interrupts are disabled,
so it is possible to write to the RTC registers to ensure that no interrupt requests are pending
after initialization. It is not possible to write to the RTC_CRH register when the peripheral is
completing a previous write operation (flagged by RTOFF=0, see Section 17.3.4).

The RTC functions are controlled by this control register. Some bits must be written using a
specific configuration procedure (see Configuration procedure).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OWIE ALRIE SECIE

rw rw rw

Bits 15:3 Reserved, forced by hardware to 0.

Bit 2 OWIE: Overflow interrupt enable

0: Overflow interrupt is masked.
1: Overflow interrupt is enabled.

Bit 1 ALRIE: Alarm interrupt enable

0: Alarm interrupt is masked.
1: Alarm interrupt is enabled.

Bit 0 SECIE: Second interrupt enable

0: Second interrupt is masked.
1: Second interrupt is enabled.

RM0041 Rev 6 475/709

RM0041 Real-time clock (RTC)

480

17.4.2 RTC control register low (RTC_CRL)

Address offset: 0x04
Reset value: 0x0020

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RTOFF CNF RSF OWF ALRF SECF

r rw rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:6 Reserved, forced by hardware to 0.

Bit 5 RTOFF: RTC operation OFF

With this bit the RTC reports the status of the last write operation performed on its registers,
indicating if it has been completed or not. If its value is ‘0’ then it is not possible to write to any
of the RTC registers. This bit is read only.
0: Last write operation on RTC registers is still ongoing.
1: Last write operation on RTC registers terminated.

Bit 4 CNF: Configuration flag

This bit must be set by software to enter in configuration mode so as to allow new values to
be written in the RTC_CNT, RTC_ALR or RTC_PRL registers. The write operation is only
executed when the CNF bit is reset by software after has been set.
0: Exit configuration mode (start update of RTC registers).
1: Enter configuration mode.

Bit 3 RSF: Registers synchronized flag

This bit is set by hardware at each time the RTC_CNT and RTC_DIV registers are updated
and cleared by software. Before any read operation after an APB1 reset or an APB1 clock
stop, this bit must be cleared by software, and the user application must wait until it is set to
be sure that the RTC_CNT, RTC_ALR or RTC_PRL registers are synchronized.
0: Registers not yet synchronized.
1: Registers synchronized.

Bit 2 OWF: Overflow flag

This bit is set by hardware when the 32-bit programmable counter overflows. An interrupt is
generated if OWIE=1 in the RTC_CRH register. It can be cleared only by software. Writing ‘1’
has no effect.
0: Overflow not detected
1: 32-bit programmable counter overflow occurred.

Bit 1 ALRF: Alarm flag

This bit is set by hardware when the 32-bit programmable counter reaches the threshold set
in the RTC_ALR register. An interrupt is generated if ALRIE=1 in the RTC_CRH register. It
can be cleared only by software. Writing ‘1’ has no effect.
0: Alarm not detected
1: Alarm detected

Bit 0 SECF: Second flag

This bit is set by hardware when the 32-bit programmable prescaler overflows, thus
incrementing the RTC counter. Hence this flag provides a periodic signal with a period
corresponding to the resolution programmed for the RTC counter (usually one second). An
interrupt is generated if SECIE=1 in the RTC_CRH register. It can be cleared only by
software. Writing ‘1’ has no effect.
0: Second flag condition not met.
1: Second flag condition met.

Real-time clock (RTC) RM0041

476/709 RM0041 Rev 6

The functions of the RTC are controlled by this control register. It is not possible to write to
the RTC_CR register while the peripheral is completing a previous write operation (flagged
by RTOFF=0, see Section 17.3.4: Configuring RTC registers).

Note: Any flag remains pending until the appropriate RTC_CR request bit is reset by software,
indicating that the interrupt request has been granted.

At reset the interrupts are disabled, no interrupt requests are pending and it is possible to
write to the RTC registers.

The OWF, ALRF, SECF and RSF bits are not updated when the APB1 clock is not running.

The OWF, ALRF, SECF and RSF bits can only be set by hardware and only cleared by
software.

If ALRF = 1 and ALRIE = 1, the RTC global interrupt is enabled. If EXTI Line 17 is also
enabled through the EXTI Controller, both the RTC global interrupt and the RTC Alarm
interrupt are enabled.

If ALRF = 1, the RTC Alarm interrupt is enabled if EXTI Line 17 is enabled through the EXTI
Controller in interrupt mode. When the EXTI Line 17 is enabled in event mode, a pulse is
generated on this line (no RTC Alarm interrupt generation).

17.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL)

The Prescaler Load registers keep the period counting value of the RTC prescaler. They are
write-protected by the RTOFF bit in the RTC_CR register, and a write operation is allowed if
the RTOFF value is ‘1’.

RTC prescaler load register high (RTC_PRLH)

Address offset: 0x08
Write only (see Section 17.3.4: Configuring RTC registers)
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PRL[19:16]

w w w w

Bits 15:4 Reserved, forced by hardware to 0.

Bits 3:0 PRL[19:16]: RTC prescaler reload value high

These bits are used to define the counter clock frequency according to the following formula:

fTR_CLK = fRTCCLK/(PRL[19:0]+1)

RM0041 Rev 6 477/709

RM0041 Real-time clock (RTC)

480

RTC prescaler load register low (RTC_PRLL)

Address offset: 0x0C
Write only (see Section 17.3.4: Configuring RTC registers)
Reset value: 0x8000

Note: If the input clock frequency (fRTCCLK) is 32.768 kHz, write 7FFFh in this register to get a
signal period of 1 second.

17.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL)

During each period of TR_CLK, the counter inside the RTC prescaler is reloaded with the
value stored in the RTC_PRL register. To get an accurate time measurement it is possible to
read the current value of the prescaler counter, stored in the RTC_DIV register, without
stopping it. This register is read-only and it is reloaded by hardware after any change in the
RTC_PRL or RTC_CNT registers.

RTC prescaler divider register high (RTC_DIVH)

Address offset: 0x10
Reset value: 0x0000

RTC prescaler divider register low (RTC_DIVL)

Address offset: 0x14
Reset value: 0x8000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRL[15:0]

w w w w w w w w w w w w w w w w

Bits 15:0 PRL[15:0]: RTC prescaler reload value low

These bits are used to define the counter clock frequency according to the following formula:

fTR_CLK = fRTCCLK/(PRL[19:0]+1)

Caution: The zero value is not recommended. RTC interrupts and flags cannot be
asserted correctly.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RTC_DIV[19:16]

r r r r

Bits 15:4 Reserved

Bits 3:0 RTC_DIV[19:16]: RTC clock divider high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_DIV[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RTC_DIV[15:0]: RTC clock divider low

Real-time clock (RTC) RM0041

478/709 RM0041 Rev 6

17.4.5 RTC counter register (RTC_CNTH / RTC_CNTL)

The RTC core has one 32-bit programmable counter, accessed through two 16-bit registers;
the count rate is based on the TR_CLK time reference, generated by the prescaler.
RTC_CNT registers keep the counting value of this counter. They are write-protected by bit
RTOFF in the RTC_CR register, and a write operation is allowed if the RTOFF value is ‘1’. A
write operation on the upper (RTC_CNTH) or lower (RTC_CNTL) registers directly loads the
corresponding programmable counter and reloads the RTC Prescaler. When reading, the
current value in the counter (system date) is returned.

RTC counter register high (RTC_CNTH)

Address offset: 0x18
Reset value: 0x0000

RTC counter register low (RTC_CNTL)

Address offset: 0x1C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 RTC_CNT[31:16]: RTC counter high

Reading the RTC_CNTH register, the current value of the high part of the RTC Counter
register is returned. To write to this register it is necessary to enter configuration mode (see
Section 17.3.4: Configuring RTC registers).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 RTC_CNT[15:0]: RTC counter low

Reading the RTC_CNTL register, the current value of the lower part of the RTC Counter
register is returned. To write to this register it is necessary to enter configuration mode (see
Section 17.3.4: Configuring RTC registers).

RM0041 Rev 6 479/709

RM0041 Real-time clock (RTC)

480

17.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL)

When the programmable counter reaches the 32-bit value stored in the RTC_ALR register,
an alarm is triggered and the RTC_alarmIT interrupt request is generated. This register is
write-protected by the RTOFF bit in the RTC_CR register, and a write operation is allowed if
the RTOFF value is ‘1’.

RTC alarm register high (RTC_ALRH)

Address offset: 0x20
Write only (see Section 17.3.4: Configuring RTC registers)
Reset value: 0xFFFF

RTC alarm register low (RTC_ALRL)

Address offset: 0x24
Write only (see Section 17.3.4: Configuring RTC registers)
Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[31:16]

w w w w w w w w w w w w w w w w

Bits 15:0 RTC_ALR[31:16]: RTC alarm high

The high part of the alarm time is written by software in this register. To write to this register
it is necessary to enter configuration mode (see Section 17.3.4: Configuring RTC registers).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[15:0]

w w w w w w w w w w w w w w w w

Bits 15:0 RTC_ALR[15:0]: RTC alarm low

The low part of the alarm time is written by software in this register. To write to this register it
is necessary to enter configuration mode (see Section 17.3.4: Configuring RTC registers).

Real-time clock (RTC) RM0041

480/709 RM0041 Rev 6

17.4.7 RTC register map

RTC registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Table 1: Low and medium-density device register boundary addresses and Table 2:
High-density device register boundary addresses for the register boundary addresses.

Table 85. RTC register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
RTC_CRH

Reserved O
W

IE

A
LR

IE

S
E

C
IE

Reset value 0 0 0

0x04
RTC_CRL

Reserved

R
T

O
F

F

C
N

F

R
S

F

O
W

F

A
L

R
F

S
E

C
F

Reset value 1 0 0 0 0 0

0x08
RTC_PRLH

Reserved
PRL[19:16]

Reset value 0 0 0 0

0x0C
RTC_PRLL

Reserved
PRL[15:0]

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
RTC_DIVH

Reserved
DIV[31:16]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
RTC_DIVL

Reserved
DIV[15:0]

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18 RTC_CNTH
Reserved

CNT[13:16]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
RTC_CNTL

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
RTC_ALRH

Reserved
ALR[31:16]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x24
RTC_ALRL

Reserved
ALR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM0041 Rev 6 481/709

RM0041 Independent watchdog (IWDG)

486

18 Independent watchdog (IWDG)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

18.1 IWDG introduction

The devices have two embedded watchdog peripherals which offer a combination of high
safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Independent
and Window) serve to detect and resolve malfunctions due to software failure, and to trigger
system reset or an interrupt (window watchdog only) when the counter reaches a given
timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is
prescaled from the APB1 clock and has a configurable time-window that can be
programmed to detect abnormally late or early application behavior.

The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. The WWDG is best suited to applications which require the watchdog to react
within an accurate timing window. For further information on the window watchdog, refer to
Section 19 on page 487.

18.2 IWDG main features

• Free-running downcounter

• clocked from an independent RC oscillator (can operate in Standby and Stop modes)

• Reset (if watchdog activated) when the downcounter value of 0x000 is reached

18.3 IWDG functional description

Figure 199 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value
is reloaded in the counter and the watchdog reset is prevented.

Independent watchdog (IWDG) RM0041

482/709 RM0041 Rev 6

18.3.1 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and generates a reset unless the Key register is
written by the software before the counter reaches end of count.

18.3.2 Register access protection

Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, first
write the code 0x5555 in the IWDG_KR register. A write access to this register with a
different value breaks the sequence and register access is protected again. This implies that
it is the case of the reload operation (writing 0xAAAA).

A status register is available to indicate that an update of the prescaler or the down-counter
reload value is on going.

18.3.3 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the IWDG counter
either continues to work normally or stops, depending on DBG_IWDG_STOP configuration
bit in DBG module. For more details, refer to Section 25.15.2: Debug support for timers,
watchdog and I2C.

Figure 199. Independent watchdog block diagram

Note: The watchdog function is implemented in the VDD voltage domain, still functional in Stop and
Standby modes.

IWDG reset
prescaler

IWDG_PR
Prescaler register

IWDG_RLR
Reload register

8-bitLSI
(40 kHz)

IWDG_KR
Key register

CORE

 VDD voltage domain

IWDG_SR
Status register

MS19944V2

12-bit reload value

12-bit downcounter

Table 86. Min/max IWDG timeout period (in ms) at 40 kHz (LSI)(1)

Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF

/4 0 0.1 409.6

/8 1 0.2 819.2

/16 2 0.4 1638.4

/32 3 0.8 3276.8

/64 4 1.6 6553.6

/128 5 3.2 13107.2

/256 6 (or 7) 6.4 26214.4

RM0041 Rev 6 483/709

RM0041 Independent watchdog (IWDG)

486

The LSI can be calibrated so as to compute the IWDG timeout with an acceptable accuracy.
For more details refer to Section 7.2.5: LSI clock.

18.4 IWDG registers

Refer to Section 2.2 on page 45 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

18.4.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

18.4.2 Prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

1. These timings are given for a kHz clock but the microcontroller internal RC frequency can vary. Refer to
the LSI oscillator characteristics table in the device datasheet for maximum and minimum values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 KEY[15:0]: Key value (write only, read 0000h)

These bits must be written by software at regular intervals with the key value AAAAh,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers
(see Section 18.3.2)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PR[2:0]

rw rw rw

Independent watchdog (IWDG) RM0041

484/709 RM0041 Rev 6

18.4.3 Reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

18.4.4 Status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

Bits 31:3 Reserved, must be kept at reset value.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected seeSection 18.3.2. They are written by software to
select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in
order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits11:0 RL[11:0]: Watchdog counter reload value

These bits are write access protected see Section 18.3.2. They are written by software to
define the value to be loaded in the watchdog counter each time the value AAAAh is written
in the IWDG_KR register. The watchdog counter counts down from this value. The timeout
period is a function of this value and the clock prescaler. Refer to Table 86.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this
register. For this reason the value read from this register is valid only when the RVU bit
in the IWDG_SR register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RVU PVU

r r

RM0041 Rev 6 485/709

RM0041 Independent watchdog (IWDG)

486

Note: If several reload values or prescaler values are used by application, it is mandatory to wait
until RVU bit is reset before changing the reload value and to wait until PVU bit is reset
before changing the prescaler value. However, after updating the prescaler and/or the
reload value it is not necessary to wait until RVU or PVU is reset before continuing code
execution (even in case of low-power mode entry, the write operation is taken into account
and completes)

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).
Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update

This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.

Independent watchdog (IWDG) RM0041

486/709 RM0041 Rev 6

18.4.5 IWDG register map

The following table gives the IWDG register map and reset values.

Refer to for the register boundary addresses.

Table 87. IWDG register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

Reserved
KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

Reserved
PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

Reserved
RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

Reserved R
V

U

P
V

U

Reset value 0 0

RM0041 Rev 6 487/709

RM0041 Window watchdog (WWDG)

493

19 Window watchdog (WWDG)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

19.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

19.2 WWDG main features

• Programmable free-running downcounter

• Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than
0x40

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 201)

• Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 0x40.

19.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.

Window watchdog (WWDG) RM0041

488/709 RM0041 Rev 6

Figure 200. Watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0.

Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the
WWDG_CR register, then it cannot be disabled again except by a reset.

Controlling the downcounter

This downcounter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay before the
watchdog produces a reset. The timing varies between a minimum and a maximum value
due to the unknown status of the prescaler when writing to the WWDG_CR register (see
Figure 201). The Configuration register (WWDG_CFR) contains the high limit of the window:
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 201 describes the window watchdog
process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

Advanced watchdog interrupt feature

The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging
must be performed before the actual reset is generated. The EWI interrupt is enabled by
setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value
0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR)
can be used to trigger specific actions (such as communications or data logging), before
resetting the device.

RM0041 Rev 6 489/709

RM0041 Window watchdog (WWDG)

493

In some applications, the EWI interrupt can be used to manage a software system check
and/or system recovery/graceful degradation, without generating a WWDG reset. In this
case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to
avoid the WWDG reset, then trigger the required actions.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: When the EWI interrupt cannot be served (due to a system lock in a higher priority task), the
WWDG reset is eventually generated.

19.4 How to program the watchdog timeout

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

Figure 201. Window watchdog timing diagram

The formula to calculate the WWDG timeout value is given by:

where:

tWWDG: WWDG timeout

tPCLK1: APB1 clock period measured in ms

4096: value corresponding to internal divider

ai17101c

W[6:0]

T[6:0] CNT downcounter

Refresh not allowed

0x3F

Refresh allowed Time

T6 bit

RESET

tWWDG tPCLK1 4096× 2
WDGTB[1:0]× T[5:0] 1+()×= ms()

Window watchdog (WWDG) RM0041

490/709 RM0041 Rev 6

As an example, let us assume APB1 frequency is equal to 24 MHz, WDGTB[1:0] is set to 3
and T[5:0] is set to 63:

Refer to Table 88 for the minimum and maximum values of the tWWDG.

19.5 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the WWDG counter
either continues to work normally or stops, depending on DBG_WWDG_STOP
configuration bit in DBG module. For more details, refer to Section 25.15.2: Debug support
for timers, watchdog and I2C.

Table 88. Minimum and maximum timeout values @24 MHz (fPCLK1)

Prescaler WDGTB Min timeout value Max timeout value

1 0 170.67 µs 10.92 ms

2 1 341.33 µs 21.85 ms

4 2 682.67 µs 43.69 ms

8 3 1365.33 µs 87.38 ms

tWWDG 1 24000⁄ 4096× 2
3× 63 1+()× 87.38ms= =

RM0041 Rev 6 491/709

RM0041 Window watchdog (WWDG)

493

19.6 WWDG registers

Refer to Section 2.2 on page 45 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

19.6.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x0000 007F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
WDGA T[6:0]

rs rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB[1:0]) PCLK1 cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6
becomes cleared).

Window watchdog (WWDG) RM0041

492/709 RM0041 Rev 6

19.6.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x0000 007F

19.6.3 Status register (WWDG_SR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWI WDGTB[1:0] W[6:0]

rs rw rw

Bit 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div 1
01: CK Counter Clock (PCLK1 div 4096) div 2
10: CK Counter Clock (PCLK1 div 4096) div 4
11: CK Counter Clock (PCLK1 div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWIF

rc_w0

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared
by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not
enabled.

RM0041 Rev 6 493/709

RM0041 Window watchdog (WWDG)

493

19.6.4 WWDG register map

The following table gives the WWDG register map and reset values.

Refer to for the register boundary addresses.

Table 89. WWDG register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
WWDG_CR

Reserved

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x04
WWDG_CFR

Reserved E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x08
WWDG_SR

Reserved E
W

IF

Reset value 0

Flexible static memory controller (FSMC) RM0041

494/709 RM0041 Rev 6

20 Flexible static memory controller (FSMC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to high-density value line devices only.

20.1 FSMC main features

The FSMC block is able to interface with synchronous and asynchronous memories
. Its main purpose is to:

• Translate the AHB transactions into the appropriate external device protocol

• Meet the access timing requirements of the external devices

All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique chip select. The FSMC performs
only one access at a time to an external device.

The FSMC has the following main features:

• Interfaces with static memory-mapped devices including:

– Static random access memory (SRAM)

– NOR/OneNAND flash memory

– PSRAM (4 memory banks)

• Supports burst mode access to synchronous devices (NOR flash and PSRAM)

• 8- or 16-bit wide databus

• Independent chip select control for each memory bank

• Independent configuration for each memory bank

• Programmable timings to support a wide range of devices, in particular:

– Programmable wait states (up to 15)

– Programmable bus turnaround cycles (up to 15)

– Programmable output enable and write enable delays (up to 15)

– Independent read and write timings and protocol, so as to support the widest
variety of memories and timings

• Write enable and byte lane select outputs for use with PSRAM and SRAM devices

• Translation of 32-bit wide AHB transactions into consecutive 16-bit or 8-bit accesses to
external 16-bit or 8-bit devices

• A Write FIFO, 2-word long , each word is 32 bits wide, only stores data and not the
address. Therefore, this FIFO only buffers AHB write burst transactions. This makes it
possible to write to slow memories and free the AHB quickly for other operations. Only
one burst at a time is buffered: if a new AHB burst or single transaction occurs while an

RM0041 Rev 6 495/709

RM0041 Flexible static memory controller (FSMC)

535

operation is in progress, the FIFO is drained. The FSMC inserts wait states until the
current memory access is complete.

• External asynchronous wait control

The FSMC registers that define the external device type and associated characteristics are
usually set at boot time and do not change until the next reset or power-up. However, it is
possible to change the settings at any time.

20.2 Block diagram

The FSMC consists of four main blocks:

• The AHB interface (including the FSMC configuration registers)

• The NOR flash/PSRAM controller

• The external device interface

The block diagram is shown in Figure 202.

Figure 202. FSMC block diagram

20.3 AHB interface

The AHB slave interface enables internal CPUs and other bus master peripherals to access
the external static memories.

AHB transactions are translated into the external device protocol. In particular, if the
selected external memory is 16 or 8 bits wide, 32-bit wide transactions on the AHB are split
into consecutive 16- or 8-bit accesses. The FSMC Chip Select (FSMC_NEx) does not
toggle between consecutive accesses except when performing accesses in mode D with the
extended mode enabled.

A
H

B
 b

us

HCLK

signals
NOR/PSRAM

FSMC_NE[4:1]
FSMC_NL (or NADV)

FSMC_NWAIT

FSMC_NOE
FSMC_NWE

ai18305b

FSMC_NBL[1:0]
FSMC_CLK

FSMC interrupt to NVIC

From clock
controller

Configuration
registers

NOR/PSRAM
memory
controller

FSMC_A[25:0]
FSMC_D[15:0]

Flexible static memory controller (FSMC) RM0041

496/709 RM0041 Rev 6

The FSMC generates an AHB error in the following conditions:

• When reading or writing to an FSMC bank which is not enabled

• When reading or writing to the NOR flash bank while the FACCEN bit is reset in the
FSMC_BCRx register.

The effect of this AHB error depends on the AHB master which has attempted the R/W
access:

• If it is the Cortex®-M3 CPU, a hard fault interrupt is generated

• If is a DMA, a DMA transfer error is generated and the corresponding DMA channel is
automatically disabled.

The AHB clock (HCLK) is the reference clock for the FSMC.

20.3.1 Supported memories and transactions

General transaction rules

The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the
accessed external device has a fixed data width. This may lead to inconsistent transfers.

Therefore, some simple transaction rules must be followed:

• AHB transaction size and memory data size are equal
There is no issue in this case.

• AHB transaction size is greater than the memory size
In this case, the FSMC splits the AHB transaction into smaller consecutive memory
accesses in order to meet the external data width.

• AHB transaction size is smaller than the memory size
Asynchronous transfers may or not be consistent depending on the type of external
device.

– Asynchronous accesses to devices that have the byte select feature (SRAM,
ROM, PSRAM).

a) FSMC allows write transactions accessing the right data through its byte lanes
NBL[1:0]

b) Read transactions are allowed. All memory bytes are read and the useless
ones are discarded. The NBL[1:0] are kept low during read transactions.

– Asynchronous accesses to devices that do not have the byte select feature (NOR
).
This situation occurs when a byte access is requested to a 16-bit wide flash
memory. Clearly, the device cannot be accessed in byte mode (only 16-bit words
can be read from/written to the flash memory) therefore:

a) Write transactions are not allowed

b) Read transactions are allowed. All memory bytes are read and the useless ones
are discarded. The NBL[1:0] are set to 0 during read transactions.

Configuration registers

The FSMC can be configured using a register set. See Section 20.5.6, for a detailed
description of the NOR flash/PSRAM control registers.

RM0041 Rev 6 497/709

RM0041 Flexible static memory controller (FSMC)

535

20.4 External device address mapping

From the FSMC point of view, the external memory is composed of a single fixed size bank
of 256 Mbytes (Refer to Figure 203):

• Bank 1 used to address up to four NOR flash or PSRAM memory devices. This bank is
split into 4 NOR/PSRAM subbanks with four dedicated chip selects, as follows:

– Bank 1 - NOR/PSRAM 1

– Bank 1 - NOR/PSRAM 2

– Bank 1 - NOR/PSRAM 3

– Bank 1 - NOR/PSRAM 4

For each bank the type of memory to be used is user-defined in the Configuration register.

Figure 203. FSMC memory banks

20.4.1 NOR/PSRAM address mapping

HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 90.

HADDR[25:0] contain the external memory address. Since HADDR is a byte address
whereas the memory is addressed in words, the address actually issued to the memory
varies according to the memory data width, as shown in the following table.

Bank 1
NOR / PSRAM

Supported memory typeBank

4 × 64 MB

6000 0000h

6FFF FFFFh

Address

ai18306

Table 90. NOR/PSRAM bank selection

HADDR[27:26](1)

1. HADDR are internal AHB address lines that are translated to external memory.

Selected bank

00 Bank 1 - NOR/PSRAM 1

01 Bank 1 - NOR/PSRAM 2

10 Bank 1 - NOR/PSRAM 3

11 Bank 1 - NOR/PSRAM 4

Table 91. External memory address

Memory width(1) Data address issued to the memory Maximum memory capacity (bits)

8-bit HADDR[25:0] 64 Mbyte x 8 = 512 Mbit

16-bit HADDR[25:1] >> 1 64 Mbyte/2 x 16 = 512 Mbit

Flexible static memory controller (FSMC) RM0041

498/709 RM0041 Rev 6

Wrap support for NOR flash/PSRAM

Wrap burst mode for synchronous memories is not supported. The memories must be
configured in linear burst mode of undefined length.

20.5 NOR flash/PSRAM controller

The FSMC generates the appropriate signal timings to drive the following types of
memories:

• Asynchronous SRAM and ROM

– 8-bit

– 16-bit

– 32-bit

• PSRAM (Cellular RAM)

– Asynchronous mode

– Burst mode for synchronous accesses

• NOR flash

– Asynchronous mode

– Burst mode for synchronous accesses

– Multiplexed or nonmultiplexed

The FSMC outputs a unique chip select signal NE[4:1] per bank. All the other signals
(addresses, data and control) are shared.

For synchronous accesses, the FSMC issues the clock (CLK) to the selected external
device only during the read/write transactions. This clock is a submultiple of the HCLK clock.
The size of each bank is fixed and equal to 64 Mbytes.

Each bank is configured by means of dedicated registers (see Section 20.5.6).

The programmable memory parameters include access timings (see Table 92) and support
for wait management (for PSRAM and NOR flash accessed in burst mode).

1. In case of a 16-bit external memory width, the FSMC internally uses HADDR[25:1] to generate the address
for external memory FSMC_A[24:0].
Whatever the external memory width (16-bit or 8-bit), FSMC_A[0] should be connected to external memory
address A[0].

Table 92. Programmable NOR/PSRAM access parameters

Parameter Function Access mode Unit Min. Max.

Address
setup

Duration of the address
setup phase

Asynchronous
AHB clock cycle
(HCLK)

0 15

Address hold
Duration of the address hold
phase

Asynchronous,
muxed I/Os

AHB clock cycle
(HCLK)

1 15

Data setup
Duration of the data setup
phase

Asynchronous
AHB clock cycle
(HCLK)

1 256

Bus turn
Duration of the bus
turnaround phase

Asynchronous and
synchronous
read/write

AHB clock cycle
(HCLK)

0 15

RM0041 Rev 6 499/709

RM0041 Flexible static memory controller (FSMC)

535

20.5.1 External memory interface signals

Table 93, Table 94 and Table 95 list the signals that are typically used to interface NOR
flash, SRAM and PSRAM.

Note: Prefix “N”. specifies the associated signal as active low.

NOR flash, nonmultiplexed I/Os

NOR flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

NOR flash, multiplexed I/Os

Clock divide
ratio

Number of AHB clock cycles
(HCLK) to build one memory
clock cycle (CLK)

Synchronous
AHB clock cycle
(HCLK)

2 16

Data latency
Number of clock cycles to
issue to the memory before
the first data of the burst

Synchronous
Memory clock
cycle (CLK)

2 17

Table 92. Programmable NOR/PSRAM access parameters (continued)

Parameter Function Access mode Unit Min. Max.

Table 93. Nonmultiplexed I/O NOR flash

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:0] O Address bus

D[15:0] I/O Bidirectional data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

NL(=NADV) O
Latch enable (this signal is called address
valid, NADV, by some NOR flash devices)

NWAIT I NOR flash wait input signal to the FSMC

Table 94. Multiplexed I/O NOR flash

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:16] O Address bus

AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

Flexible static memory controller (FSMC) RM0041

500/709 RM0041 Rev 6

NOR-flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

PSRAM/SRAM, nonmultiplexed I/Os

PSRAM memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

PSRAM, multiplexed I/Os

NL(=NADV) O
Latch enable (this signal is called address valid, NADV, by some NOR
flash devices)

NWAIT I NOR flash wait input signal to the FSMC

Table 95. Nonmultiplexed I/Os PSRAM/SRAM

FSMC signal name I/O Function

CLK O Clock (only for PSRAM synchronous access)

A[25:0] O Address bus

D[15:0] I/O Data bidirectional bus

NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))

NOE O Output enable

NWE O Write enable

NL(= NADV) O Address valid only for PSRAM input (memory signal name: NADV)

NWAIT I PSRAM wait input signal to the FSMC

NBL[1] O Upper byte enable (memory signal name: NUB)

NBL[0] O Lowed byte enable (memory signal name: NLB)

Table 96. Multiplexed I/O PSRAM

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:16] O Address bus

AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))

NOE O Output enable

NWE O Write enable

NL(= NADV) O Address valid PSRAM input (memory signal name: NADV)

NWAIT I PSRAM wait input signal to the FSMC

Table 94. Multiplexed I/O NOR flash (continued)

FSMC signal name I/O Function

RM0041 Rev 6 501/709

RM0041 Flexible static memory controller (FSMC)

535

PSRAM memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

20.5.2 Supported memories and transactions

Table 97 below displays an example of the supported devices, access modes and
transactions when the memory data bus is 16-bit for NOR, PSRAM and SRAM.
Transactions not allowed (or not supported) by the FSMC in this example appear in gray.

NBL[1] O Upper byte enable (memory signal name: NUB)

NBL[0] O Lowed byte enable (memory signal name: NLB)

Table 96. Multiplexed I/O PSRAM (continued)

FSMC signal name I/O Function

Table 97. NOR flash/PSRAM controller: example of supported memories and transactions

Device Mode R/W
AHB
data
size

Memory
data size

Allowed/
not

allowed
Comments

NOR flash
(muxed I/Os and
nonmuxed I/Os)

Asynchronous R 8 16 Y -

Asynchronous W 8 16 N -

Asynchronous R 16 16 Y -

Asynchronous W 16 16 Y -

Asynchronous R 32 16 Y Split into two FSMC accesses

Asynchronous W 32 16 Y Split into two FSMC accesses

Asynchronous page R - 16 N Mode is not supported

Synchronous R 8 16 N -

Synchronous R 16 16 Y -

Synchronous R 32 16 Y -

PSRAM
(multiplexed and
nonmultiplexed
I/Os)

Asynchronous R 8 16 Y -

Asynchronous W 8 16 Y Use of byte lanes NBL[1:0]

Asynchronous R 16 16 Y -

Asynchronous W 16 16 Y -

Asynchronous R 32 16 Y Split into two FSMC accesses

Asynchronous W 32 16 Y Split into two FSMC accesses

Asynchronous page R - 16 N Mode is not supported

Synchronous R 8 16 N -

Synchronous R 16 16 Y -

Synchronous R 32 16 Y -

Synchronous W 8 16 Y Use of byte lanes NBL[1:0]

Synchronous W 16 / 32 16 Y -

Flexible static memory controller (FSMC) RM0041

502/709 RM0041 Rev 6

20.5.3 General timing rules

Signals synchronization

• All controller output signals change on the rising edge of the internal clock (HCLK)

• In synchronous mode (read or write), all output signals change on the rising edge of
HCLK. Whatever the CLKDIV value, all outputs change as follows:

– NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the
falling edge of FSMC_CLK clock.

– NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising
edge of FSMC_CLK clock.

20.5.4 NOR flash/PSRAM controller asynchronous transactions

Asynchronous static memories (NOR flash memory, PSRAM, SRAM)

• Signals are synchronized by the internal clock HCLK. This clock is not issued to the
memory

• The FSMC always samples the data before de-asserting the NOE signals. This
guarantees that the memory data-hold timing constraint is met (chip enable high to
data transition, usually 0 ns min.)

• If the extended mode is enabled (EXTMOD bit is set in the FSMC_BCRx register), up
to four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and
D modes for read and write operations. For example, read operation can be performed
in mode A and write in mode B.

• If the extended mode is disabled (EXTMOD bit is reset in the FSMC_BCRx register),
the FSMC can operate in Mode1 or Mode2 as follows:

– Mode 1 is the default mode when SRAM/PSRAM memory type is selected
(MTYP[0:1] = 0x0 or 0x01 in the FSMC_BCRx register)

– Mode 2 is the default mode when NOR memory type is selected (MTYP[0:1] =
0x10 in the FSMC_BCRx register).

Mode 1 - SRAM/PSRAM (CRAM)

The next figures show the read and write transactions for the supported modes followed by
the required configuration of FSMC _BCRx, and FSMC_BTRx/FSMC_BWTRx registers.

SRAM and ROM

Asynchronous R 8 / 16 16 Y -

Asynchronous W 8 / 16 16 Y Use of byte lanes NBL[1:0]

Asynchronous R 32 16 Y Split into two FSMC accesses

Asynchronous W 32 16 Y
Split into two FSMC accesses.
Use of byte lanes NBL[1:0]

Table 97. NOR flash/PSRAM controller: example of supported memories and transactions

Device Mode R/W
AHB
data
size

Memory
data size

Allowed/
not

allowed
Comments

RM0041 Rev 6 503/709

RM0041 Flexible static memory controller (FSMC)

535

Figure 204. Mode1 read accesses

1. NBL[1:0] are driven low during read access.

Figure 205. Mode1 write accesses

The one HCLK cycle at the end of the write transaction helps guarantee the address and
data hold time after the NWE rising edge. Due to the presence of this one HCLK cycle, the
DATAST value must be greater than zero (DATAST > 0).

A[25:0]

NOE

ADDSET DATAST

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven
by memory

ai15557

High

A[25:0]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven by FSMC

ai15558

1HCLK

Flexible static memory controller (FSMC) RM0041

504/709 RM0041 Rev 6

Table 98. FSMC_BCRx bit fields

Bit number Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT Set to 1 if the memory supports this feature. Otherwise keep at 0.

14 EXTMOD 0x0

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Don’t care

5-4 MWID As needed

3-2 MTYP[0:1] As needed, exclude 0x2 (NOR flash)

1 MUXE 0x0

0 MBKEN 0x1

Table 99. FSMC_BTRx bit fields

Bit number Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD Don’t care

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses, DATAST HCLK cycles for read accesses).

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles).

Minimum value for ADDSET is 0.

RM0041 Rev 6 505/709

RM0041 Flexible static memory controller (FSMC)

535

Mode A - SRAM/PSRAM (CRAM) OE toggling

Figure 206. ModeA read accesses

1. NBL[1:0] are driven low during read access.

Figure 207. ModeA write accesses

A[25:0]

NOE

ADDSET DATAST

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven
by memory

ai15559

High

A[25:0]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven by FSMC

ai15560

1HCLK

Flexible static memory controller (FSMC) RM0041

506/709 RM0041 Rev 6

The differences compared with mode1 are the toggling of NOE and the independent read
and write timings.

Table 100. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Don’t care

5-4 MWID As needed

3-2 MTYP[0:1] As needed, exclude 0x2 (NOR flash)

1 MUXEN 0x0

0 MBKEN 0x1

Table 101. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

RM0041 Rev 6 507/709

RM0041 Flexible static memory controller (FSMC)

535

Mode 2/B - NOR flash

Figure 208. Mode2 and mode B read accesses

Table 102. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

A[25:0]

NOE

ADDSET DATAST

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai15561

High

Flexible static memory controller (FSMC) RM0041

508/709 RM0041 Rev 6

Figure 209. Mode2 write accesses

Figure 210. Mode B write accesses

The differences with mode1 are the toggling of NWE and the independent read and write
timings when extended mode is set (Mode B).

A[25:0]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai15562

1HCLK

A[25:0]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai15563

1HCLK

RM0041 Rev 6 509/709

RM0041 Flexible static memory controller (FSMC)

535

Table 103. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 Reserved 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x1 for mode B, 0x0 for mode 2

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR flash memory)

1 MUXEN 0x0

0 MBKEN 0x1

Table 104. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x1

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

Flexible static memory controller (FSMC) RM0041

510/709 RM0041 Rev 6

Note: The FSMC_BWTRx register is valid only if extended mode is set (mode B), otherwise all its
content is don’t care.

Mode C - NOR flash - OE toggling

Figure 211. Mode C read accesses

Table 105. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x1

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

A[25:0]

NOE

ADDSET DATAST

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai15564

High

RM0041 Rev 6 511/709

RM0041 Flexible static memory controller (FSMC)

535

Figure 212. Mode C write accesses

The differences compared with mode1 are the toggling of NOE and the independent read
and write timings.

Table 106. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep
at 0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR flash memory)

A[25:0]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai15565

1HCLK

Flexible static memory controller (FSMC) RM0041

512/709 RM0041 Rev 6

1 MUXEN 0x0

0 MBKEN 0x1

Table 107. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x2

27-24 DATLAT 0x0

23-20 CLKDIV 0x0

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

Table 108. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x2

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

Table 106. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

RM0041 Rev 6 513/709

RM0041 Flexible static memory controller (FSMC)

535

Mode D - asynchronous access with extended address

Figure 213. Mode D read accesses

Figure 214. Mode D write accesses

A[25:0]

NOE

ADDSET DATAST

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai15566

High

ADDHLD
HCLK cycles

Flexible static memory controller (FSMC) RM0041

514/709 RM0041 Rev 6

The differences with mode1 are the toggling of NOE that goes on toggling after NADV
changes and the independent read and write timings.

Table 109. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep
at 0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP[0:1] As needed

1 MUXEN 0x0

0 MBKEN 0x1

Table 110. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x3

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD
Duration of the middle phase of the read access (ADDHLD HCLK
cycles)

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses. Minimum value for ADDSET is 1.

RM0041 Rev 6 515/709

RM0041 Flexible static memory controller (FSMC)

535

Muxed mode - multiplexed asynchronous access to NOR flash memory

Figure 215. Multiplexed read accesses

Table 111. FSMC_BWTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x3

27-24 DATLAT 0x0

23-20 CLKDIV 0x0

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Duration of the second access phase

7-4 ADDHLD
Duration of the middle phase of the write access (ADDHLD HCLK
cycles)

3-0 ADDSET[3:0] Duration of the first access phase . Minimum value for ADDSET is 1.

Flexible static memory controller (FSMC) RM0041

516/709 RM0041 Rev 6

Figure 216. Multiplexed write accesses

The difference with mode D is the drive of the lower address byte(s) on the databus.

Table 112. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-21 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x0

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR flash memory)

A[25:16]

NOE

ADDSET (DATAST + 1)

Memory transaction

NEx

AD[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai15569

1HCLK

ADDHLD
HCLK cycles

Lower address

RM0041 Rev 6 517/709

RM0041 Flexible static memory controller (FSMC)

535

WAIT management in asynchronous accesses

If the asynchronous memory asserts a WAIT signal to indicate that it is not yet ready to
accept or to provide data, the ASYNCWAIT bit has to be set in FSMC_BCRx register.

If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access
phase (Data setup phase) programmed by the DATAST bits, is extended until WAIT
becomes inactive. Unlike the data setup phase, the first access phases (Address setup and
Address hold phases), programmed by the ADDSET[3:0] and ADDHLD bits, are not WAIT
sensitive and so they are not prolonged.

The data setup phase (DATAST in the FSMC_BTRx register) must be programmed so that
WAIT can be detected 4 HCLK cycles before the end of memory transaction. The following
cases must be considered:

1 MUXEN 0x1

0 MBKEN 0x1

Table 113. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles for
read accesses and DATAST+1 HCLK cycles for write accesses).

7-4 ADDHLD Duration of the middle phase of the access (ADDHLD HCLK cycles).

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles).
Minimum value for ADDSET is 1.

Table 112. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

Flexible static memory controller (FSMC) RM0041

518/709 RM0041 Rev 6

1. DATAST in FSMC_BTRx register) Memory asserts the WAIT signal aligned to
NOE/NWE which toggles:

2. Memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling):

if

then

otherwise

where max_wait_assertion_time is the maximum time taken by the memory to assert
the WAIT signal once NEx/NOE/NWE is low.

Figure 217 and Figure 218 show the number of HCLK clock cycles that are added to the
memory access after WAIT is released by the asynchronous memory (independently of the
above cases).

Figure 217. Asynchronous wait during a read access

1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register.

DATAST 4 HCLK×() max_wait_assertion_time+≥

max_wait_assertion_time address_phase hold_phase+>

DATAST 4 HCLK×() max_wait_assertion_time address_phase– hold_phase–()+≥

DATAST 4 HCLK×≥

A[25:0]

NOE

4HCLK

Memory transaction

NWAIT

D[15:0]

NEx

data driven
by memory

ai18471b

address phase

don’t care

data setup phase

don’t care

RM0041 Rev 6 519/709

RM0041 Flexible static memory controller (FSMC)

535

Figure 218. Asynchronous wait during a write access

1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register.

A[25:0]

NWE

Memory transaction

NWAIT

D[15:0]

NEx

data driven by FSMC

ai15797c

3HCLK

address phase data setup phase

1HCLK

don’t care don’t care

Flexible static memory controller (FSMC) RM0041

520/709 RM0041 Rev 6

20.5.5 Synchronous transactions

The memory clock, CLK, is a submultiple of HCLK according to the value of parameter
CLKDIV.

NOR flash memories specify a minimum time from NADV assertion to CLK high. To meet
this constraint, the FSMC does not issue the clock to the memory during the first internal
clock cycle of the synchronous access (before NADV assertion). This guarantees that the
rising edge of the memory clock occurs in the middle of the NADV low pulse.

Data latency versus NOR flash latency

The data latency is the number of cycles to wait before sampling the data. The DATLAT
value must be consistent with the latency value specified in the NOR flash configuration
register. The FSMC does not include the clock cycle when NADV is low in the data latency
count.

Caution: Some NOR flash memories include the NADV Low cycle in the data latency count, so the
exact relation between the latency and the FMSC DATLAT parameter can be either of:

• NOR flash latency = (DATLAT + 2) CLK clock cycles

• NOR flash latency = (DATLAT + 3) CLK clock cycles

Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can
be set to its minimum value. As a result, the FSMC samples the data and waits long enough
to evaluate if the data are valid. Thus the FSMC detects when the memory exits latency and
real data are taken.

Other memories do not assert NWAIT during latency. In this case the latency must be set
correctly for both the FSMC and the memory, otherwise invalid data are mistaken for good
data, or valid data are lost in the initial phase of the memory access.

Single-burst transfer

When the selected bank is configured in burst mode for synchronous accesses, if for
example an AHB single-burst transaction is requested on 16-bit memories, the FSMC
performs a burst transaction of length 1 (if the AHB transfer is 16-bit), or length 2 (if the AHB
transfer is 32-bit) and de-assert the chip select signal when the last data is strobed.

Clearly, such a transfer is not the most efficient in terms of cycles (compared to an
asynchronous read). Nevertheless, a random asynchronous access would first require to re-
program the memory access mode, which would altogether last longer.

Cross boundary page for Cellular RAM 1.5

Cellular RAM 1.5 does not allow burst access to cross the page boundary. The FSMC
controller allows to split automatically the burst access when the memory page size is
reached by configuring the CPSIZE bits in the FSMC_BCR1 register following the memory
page size.

Wait management

For synchronous NOR flash memories, NWAIT is evaluated after the programmed latency
period, (DATLAT+2) CLK clock cycles.

If NWAIT is sensed active (low level when WAITPOL = 0, high level when WAITPOL = 1),
wait states are inserted until NWAIT is sensed inactive (high level when WAITPOL = 0, low
level when WAITPOL = 1).

RM0041 Rev 6 521/709

RM0041 Flexible static memory controller (FSMC)

535

When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1)
or on the next clock edge (bit WAITCFG = 0).

During wait-state insertion via the NWAIT signal, the controller continues to send clock
pulses to the memory, keeping the chip select and output enable signals valid, and does not
consider the data valid.

There are two timing configurations for the NOR flash NWAIT signal in burst mode:

• Flash memory asserts the NWAIT signal one data cycle before the wait state (default
after reset)

• Flash memory asserts the NWAIT signal during the wait state

These two NOR flash wait state configurations are supported by the FSMC, individually for
each chip select, thanks to the WAITCFG bit in the FSMC_BCRx registers (x = 0..3).

Figure 219. Wait configurations

aaddr[15:0] data data

addr[25:16]

Memory transaction = burst of 4 half words

HCLK

CLK

A[25:16]

NADV

NWAIT
(WAITCFG = 1)

A/D[15:0]

inserted wait state

data

NWAIT
(WAITCFG = 0)

ai15798b

Flexible static memory controller (FSMC) RM0041

522/709 RM0041 Rev 6

Figure 220. Synchronous multiplexed read mode - NOR, PSRAM (CRAM)

1. Byte lane outputs BL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access,
they are held low.

2. NWAIT polarity is set to 0.

Table 114. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW No effect on synchronous read

18-16 CPSIZE As needed (0x1 for CRAM 1.5)

15 ASCYCWAIT 0x0

14 EXTMOD 0x0

13 WAITEN Set to 1 if the memory supports this feature, otherwise keep at 0.

12 WREN no effect on synchronous read

11 WAITCFG to be set according to memory

10 WRAPMOD 0x0

9 WAITPOL to be set according to memory

8 BURSTEN 0x1

7 Reserved 0x1

6 FACCEN Set according to memory support (NOR flash memory)

5-4 MWID As needed

Addr[15:0] data data

addr[25:16]

Memory transaction = burst of 4 half words

HCLK

CLK

A[25:16]

NEx

NOE

NWE High

NADV

NWAIT
(WAITCFG=

0)

A/D[15:0]

1 clock
cycle

1 clock
cycle

(DATLAT + 2) inserted wait state

Data strobes
ai17723f

CLK cycles

data data

Data strobes

RM0041 Rev 6 523/709

RM0041 Flexible static memory controller (FSMC)

535

3-2 MTYP[0:1] 0x1 or 0x2

1 MUXEN As needed

0 MBKEN 0x1

Table 115. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29:28 ACCMOD 0x0

27-24 DATLAT Data latency

23-20 CLKDIV

0x0 to get CLK = HCLK (not supported)

0x1 to get CLK = 2 × HCLK

..

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Don’t care

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0] Don’t care

Table 114. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

Flexible static memory controller (FSMC) RM0041

524/709 RM0041 Rev 6

Figure 221. Synchronous multiplexed write mode - PSRAM (CRAM)

1. Memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0.

2. NWAIT polarity is set to 0.

3. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active.

Addr[15:0] data

addr[25:16]

Memory transaction = burst of 2 half words

HCLK

CLK

A[25:16]

NEx

NOE

NWE

Hi-Z

NADV

NWAIT
(WAITCFG = 0)

A/D[15:0]

1 clock 1 clock

(DATLAT + 2) inserted wait state

ai14731f

 CLK cycles

data

Table 116. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x1

18-16 CPSIZE As needed (0x1 for CRAM 1.5)

15 ASCYCWAIT 0x0

14 EXTMOD 0x0

13 WAITEN Set to 1 if the memory supports this feature, otherwise keep at 0.

12 WREN 0x1

11 WAITCFG 0x0

10 WRAPMOD 0x0

RM0041 Rev 6 525/709

RM0041 Flexible static memory controller (FSMC)

535

9 WAITPOL to be set according to memory

8 BURSTEN no effect on synchronous write

7 Reserved 0x1

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP[0:1] 0x1

1 MUXEN As needed

0 MBKEN 0x1

Table 117. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29:28 ACCMOD 0x0

27-24 DATLAT Data latency

23-20 CLKDIV
0x0 to get CLK = HCLK (not supported)

0x1 to get CLK = 2 × HCLK

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Don’t care

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0] Don’t care

Table 116. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

Flexible static memory controller (FSMC) RM0041

526/709 RM0041 Rev 6

20.5.6 NOR/PSRAM control registers

The NOR/PSRAM control registers have to be accessed by words (32 bits).

SRAM/NOR-flash chip-select control registers 1..4 (FSMC_BCR1..4)

Address offset: 0xA000 0000 + 8 * (x – 1), x = 1...4

Reset value: 0x0000 30DB for Bank1 and 0x0000 30D2 for Bank 2 to 4

This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR flash memories.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
B

U
R

S
T

R
W

CPSIZE[2:0]

A
S

C
Y

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

ed

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[1
:0

]

M
U

X
E

N

M
B

K
E

N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31: 20 Reserved, must be kept at reset value.

Bit 19 CBURSTRW: Write burst enable.

For Cellular RAM (PSRAM) memories, this bit enables the synchronous burst protocol
during write operations. The enable bit for synchronous read accesses is the BURSTEN
bit in the FSMC_BCRx register.

0: Write operations are always performed in asynchronous mode
1: Write operations are performed in synchronous mode.

Bits 18: 16 CPSIZE[2:0]: CRAM page size.
These are used for Cellular RAM 1.5 which does not allow burst access to cross the
address boundaries between pages. When these bits are configured, the FSMC
controller splits automatically the burst access when the memory page size is reached
(refer to memory datasheet for page size).

000: No burst split when crossing page boundary (default after reset)
001: 128 bytes
010: 256 bytes
011: 512 bytes
100: 1024 bytes
Others: reserved.

Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers

This bit enables/disables the FSMC to use the wait signal even during an asynchronous
protocol.

0: NWAIT signal is not taken into account when running an asynchronous protocol
(default after reset)
1: NWAIT signal is taken into account when running an asynchronous protocol

RM0041 Rev 6 527/709

RM0041 Flexible static memory controller (FSMC)

535

Bit 14 EXTMOD: Extended mode enable.

This bit enables the FSMC to program the write timings for non-multiplexed
asynchronous accesses inside the FSMC_BWTR register, thus resulting in different
timings for read and write operations.

0: values inside FSMC_BWTR register are not taken into account (default after reset)
1: values inside FSMC_BWTR register are taken into account

Note: When the extended mode is disabled, the FSMC can operate in Mode1 or Mode2
as follows:

– Mode 1 is the default mode when the SRAM/PSRAM memory type is selected
(MTYP [0:1]=0x0 or 0x01)

– Mode 2 is the default mode when the NOR memory type is selected
(MTYP [0:1]= 0x10).

Bit 13 WAITEN: Wait enable bit.

This bit enables/disables wait-state insertion via the NWAIT signal when accessing the
flash memory in synchronous mode.

0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after
the programmed flash latency period)
1: NWAIT signal is enabled (its level is taken into account after the programmed flash
latency period to insert wait states if asserted) (default after reset)

Bit 12 WREN: Write enable bit.

This bit indicates whether write operations are enabled/disabled in the bank by the
FSMC:

0: Write operations are disabled in the bank by the FSMC, an AHB error is reported,
1: Write operations are enabled for the bank by the FSMC (default after reset).

Bit 11 WAITCFG: Wait timing configuration.

The NWAIT signal indicates whether the data from the memory are valid or if a wait state
must be inserted when accessing the flash memory in synchronous mode. This
configuration bit determines if NWAIT is asserted by the memory one clock cycle before
the wait state or during the wait state:

0: NWAIT signal is active one data cycle before wait state (default after reset),
1: NWAIT signal is active during wait state (not used for PRAM).

Bit 10 WRAPMOD: Wrapped burst mode support.

Defines whether the controller splits or not an AHB burst wrap access into two linear
accesses. Valid only when accessing memories in burst mode

0: Direct wrapped burst is not enabled (default after reset),
1: Direct wrapped burst is enabled.

Note: This bit has no effect as the CPU and DMA cannot generate wrapping burst
transfers.

Bit 9 WAITPOL: Wait signal polarity bit.

Defines the polarity of the wait signal from memory. Valid only when accessing the
memory in burst mode:

0: NWAIT active low (default after reset),
1: NWAIT active high.

Bit 8 BURSTEN: Burst enable bit.

This bit enables/disables synchronous accesses during read operations. It is valid only
for synchronous memories operating in burst mode:

0: Burst mode disabled (default after reset). Read accesses are performed in
asynchronous mode.
1: Burst mode enable. Read accesses are performed in synchronous mode.

Flexible static memory controller (FSMC) RM0041

528/709 RM0041 Rev 6

Bit 7 Reserved, must be kept at reset value.

Bit 6 FACCEN: Flash access enable

Enables NOR flash memory access operations.

0: Corresponding NOR flash memory access is disabled
1: Corresponding NOR flash memory access is enabled (default after reset)

Bits 5:4 MWID[1:0]: Memory databus width.

Defines the external memory device width, valid for all type of memories.

00: 8 bits,
01: 16 bits (default after reset),
10: reserved, do not use,
11: reserved, do not use.

Bits 3:2 MTYP[1:0]: Memory type.

Defines the type of external memory attached to the corresponding memory bank:

00: SRAM (default after reset for Bank 2...4)
01: PSRAM (CRAM)
10: NOR flash/OneNAND flash (default after reset for Bank 1)
11: reserved

Bit 1 MUXEN: Address/data multiplexing enable bit.

When this bit is set, the address and data values are multiplexed on the databus, valid
only with NOR and PSRAM memories:

0: Address/Data nonmultiplexed
1: Address/Data multiplexed on databus (default after reset)

Bit 0 MBKEN: Memory bank enable bit.

Enables the memory bank. After reset Bank1 is enabled, all others are disabled.
Accessing a disabled bank causes an ERROR on AHB bus.

0: Corresponding memory bank is disabled
1: Corresponding memory bank is enabled

RM0041 Rev 6 529/709

RM0041 Flexible static memory controller (FSMC)

535

SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4)

Address offset: 0xA000 0000 + 0x04 + 8 * (x – 1), x = 1..4

Reset value: 0x0FFF FFFF

FSMC_BTRx bits are written by software to add a delay at the end of a read /write
transaction. This delay allows matching the minimum time between consecutive
transactions (tEHEL from NEx high to FSMC_NEx low) and the maximum time required by
the memory to free the data bus after a read access (tEHQZ).

This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR flash memories.If the EXTMOD bit is set in the FSMC_BCRx register,
then this register is partitioned for write and read access, that is, 2 registers are available:
one to configure read accesses (this register) and one to configure write accesses
(FSMC_BWTRx registers).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
e

se
rv

e
d

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 ACCMOD[1:0]: Access mode

Specifies the asynchronous access modes as shown in the timing diagrams. These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.

00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:24 DATLAT[3:0]: Data latency for synchronous NOR flash memory (see note below bit description
table)

For synchronous NOR flash memory with burst mode enabled, defines the number of
memory clock cycles (+2) to issue to the memory before reading/writing the first data.
This timing parameter is not expressed in HCLK periods, but in FSMC_CLK periods. In case
of PSRAM (CRAM), this field must be set to 0. In asynchronous NOR flash or SRAM or
PSRAM , this value is don't care.
0000: Data latency of 2 CLK clock cycles for first burst access
1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset)

Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FSMC_CLK signal)

Defines the period of FSMC_CLK clock output signal, expressed in number of HCLK cycles:

0000: Reserved
0001: FSMC_CLK period = 2 × HCLK periods
0010: FSMC_CLK period = 3 × HCLK periods
1111: FSMC_CLK period = 16 × HCLK periods (default value after reset)

In asynchronous NOR flash, SRAM or PSRAM accesses, this value is don’t care.

Flexible static memory controller (FSMC) RM0041

530/709 RM0041 Rev 6

Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration

These bits are written by software to add a delay at the end of a write-to-read (and read-to
write) transaction. The programmed bus turnaround delay is inserted between an
asynchronous read (muxed or D mode) or a write transaction and any other
asynchronous/synchronous read or write to/from a static bank (for a read operation, the bank
can be the same or a different one; for a write operation, the bank can be different except in r
muxed or D mode).
In some cases, the bus turnaround delay is fixed, whatever the programmed BUSTURN
values:

– No bus turnaround delay is inserted between two consecutive asynchronous write transfers
to the same static memory bank except in muxed and D mode.

– A bus turnaround delay of 1 FSMC clock cycle is inserted between:

– Two consecutive asynchronous read transfers to the same static memory bank
except for muxed and D modes.

– An asynchronous read to an asynchronous or synchronous write to any static bank
or dynamic bank except for muxed and D modes.

– An asynchronous (modes 1, 2, A, B or C) read and a read operation from another
static bank.

– A bus turnaround delay of 2 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to the same
bank

– A synchronous write (burst or single) access and an asynchronous write or read
transfer to or from static memory bank (the bank can be the same or different in case
of a read operation).

– Two consecutive synchronous read accesses (in burst or single mode) followed by a
any synchronous/asynchronous read or write from/to another static memory bank.

– A bus turnaround delay of 3 FSMC clock cycles is inserted between:

– Two consecutive synchronous write operations (in burst or single mode) to different
static banks.

– A synchronous write access (in burst or single mode) and a synchronous read
access from the same or to a different bank.

0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 × HCLK clock cycles (default value after reset)

RM0041 Rev 6 531/709

RM0041 Flexible static memory controller (FSMC)

535

Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these
memories issue the NWAIT signal during the whole latency phase to prolong the latency as
needed.
With PSRAMs (CRAMs) the DATLAT field must be set to 0, so that the FSMC exits its
latency phase soon and starts sampling NWAIT from memory, then starts to read or write
when the memory is ready.
This method can be used also with the latest generation of synchronous flash memories that
issue the NWAIT signal, unlike older flash memories (check the datasheet of the specific
flash memory being used).

Bits 15:8 DATAST[7:0]: Data-phase duration

These bits are written by software to define the duration of the data phase (refer to Figure 204
to Figure 216), used in asynchronous accesses:

0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)

For each memory type and access mode data-phase duration, refer to the respective figure
(Figure 204 to Figure 216).

Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK clock
cycles.

Note: In synchronous accesses, this value is don't care.

Bits 7:4 ADDHLD[3:0]: Address-hold phase duration

These bits are written by software to define the duration of the address hold phase (refer to
Figure 213 to Figure 216), used in mode D and multiplexed accesses:

0000: Reserved
0001: ADDHLD phase duration =1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)

For each access mode address-hold phase duration, refer to the respective figure (Figure 213
to Figure 216).

Note: In synchronous accesses, this value is not used, the address hold phase is always 1
memory clock period duration.

Bits 3:0 ADDSET[3:0]: Address setup phase duration

These bits are written by software to define the duration of the address setup phase (refer to
Figure 204 to Figure 216), used in SRAMs, ROMs and asynchronous NOR flash and PSRAM
accesses:

0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)

For each access mode address setup phase duration, refer to the respective figure (refer to
Figure 204 to Figure 216).

Note: In synchronous NOR flash and PSRAM accesses, this value is don’t care.

Flexible static memory controller (FSMC) RM0041

532/709 RM0041 Rev 6

SRAM/NOR-Flash write timing registers 1..4 (FSMC_BWTR1..4)

Address offset: 0xA000 0000 + 0x104 + 8 * (x – 1), x = 1...4

Reset value: 0x0FFF FFFF

This register contains the control information of each memory bank, used for SRAMs,
PSRAMs and NOR flash memories. This register is active for write asynchronous access
only when the EXTMOD bit is set in the FSMC_BCRx register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

ACCM
OD[2:0] Reserved

BUSTURN[3:0] DATAST[7:0] ADDHLD[3:0] ADDSET[3:0]

rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 ACCMOD[2:0]: Access mode.

Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.

00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:20 Reserved, must be kept at reset value.

Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration

The programmed bus turnaround delay is inserted between a an asynchronous write transfer and
any other asynchronous/synchronous read or write transfer to/from a static bank (for a read
operation, the bank can be the same or a different one; for a write operation, the bank can be
different except in r muxed or D mode).

In some cases, the bus turnaround delay is fixed, whatever the programmed BUSTURN values:

– No bus turnaround delay is inserted between two consecutive asynchronous write transfers to the
same static memory bank except in muxed and D mode.

– A bus turnaround delay of 2 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to the same bank.

– A synchronous write transfer (in burst or single mode) and an asynchronous write or read
transfer to/from static a memory bank.

– A bus turnaround delay of 3 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to different static
banks.

– A synchronous write transfer (in burst or single mode) and a synchronous read from the
same or from a different bank.

0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset)

RM0041 Rev 6 533/709

RM0041 Flexible static memory controller (FSMC)

535

Bits 15:8 DATAST[7:0]: Data-phase duration.

These bits are written by software to define the duration of the data phase (refer to Figure 204 to
Figure 216), used in asynchronous SRAM, PSRAM and NOR flash memory accesses:

0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)

Note: In synchronous accesses, this value is don't care.

Bits 7:4 ADDHLD[3:0]: Address-hold phase duration.

These bits are written by software to define the duration of the address hold phase (refer to
Figure 213 to Figure 216), used in asynchronous multiplexed accesses:

0000: Reserved
0001: ADDHLD phase duration = 1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR flash accesses, this value is not used, the address hold phase is always
1 flash clock period duration.

Bits 3:0 ADDSET[3:0]: Address setup phase duration.

These bits are written by software to define the duration of the address setup phase in HCLK cycles
(refer to Figure 213 to Figure 216), used in asynchronous accessed:

0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR flash and PSRAM accesses, this value is don’t care.

Flexible static memory controller (FSMC) RM0041

534/709 RM0041 Rev 6

20.5.7 FSMC register map

The following table summarizes the FSMC registers.

Table 118. FSMC register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 FSMC_BCR1 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0008 FSMC_BCR2 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0010 FSMC_BCR3 Reserved
C

B
U

R
S

T
R

W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0018 FSMC_BCR4 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

ed

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0004 FSMC_BTR1 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

000C FSMC_BTR2 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]
ADDSET[3:0]

0014 FSMC_BTR3 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

001C FSMC_BTR4 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

0104
FSMC_BWTR

1
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

010C
FSMC_BWTR

2
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

RM0041 Rev 6 535/709

RM0041 Flexible static memory controller (FSMC)

535

Refer to for the register boundary addresses.

0114
FSMC_BWTR

3
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

LD
[3

:0
]

A
D

D
S

E
T

[3
:0

]

011C
FSMC_BWTR

4
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

LD
[3

:0
]

A
D

D
S

E
T

[3
:0

]

Table 118. FSMC register map (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Serial peripheral interface (SPI) RM0041

536/709 RM0041 Rev 6

21 Serial peripheral interface (SPI)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

21.1 SPI introduction

The serial peripheral interface (SPI) allows half/ full-duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multimaster configuration.

It may be used for a variety of purposes, including simplex synchronous transfers on two
lines with a possible bidirectional data line or reliable communication using CRC checking.

Warning: Since some SPI1 and SPI3 pins may be mapped onto some
pins used by the JTAG interface (SPI1/3_NSS onto JTDI,
SPI1/3_SCK onto JTDO and SPI1/3_MISO onto NJTRST), you
may either:
– disable the JTAG and use the SWD interface prior to
configuring the pins listed as SPI IOs (when debugging the
application), or
– disable both JTAG/SWD interfaces (for standalone
applications).
For more information on the configuration of the JTAG/SWD
interface pins, refer to Section 7.3.3: JTAG/SWD alternate
function remapping.

RM0041 Rev 6 537/709

RM0041 Serial peripheral interface (SPI)

565

21.2 SPI main features

21.2.1 SPI features

• Full-duplex synchronous transfers on three lines

• Simplex synchronous transfers on two lines with or without a bidirectional data line

• 8- or 16-bit transfer frame format selection

• Master or slave operation

• Multimaster mode capability

• 8 master mode baud rate prescalers (fPCLK/2 max.)

• Slave mode frequency (fPCLK/2 max)

• Faster communication for both master and slave

• NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

• Programmable clock polarity and phase

• Programmable data order with MSB-first or LSB-first shifting

• Dedicated transmission and reception flags with interrupt capability

• SPI bus busy status flag

• Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

• Master mode fault, overrun and CRC error flags with interrupt capability

• 1-byte transmission and reception buffer with DMA capability: Tx and Rx requests

Serial peripheral interface (SPI) RM0041

538/709 RM0041 Rev 6

21.3 SPI functional description

21.3.1 General description

The block diagram of the SPI is shown in Figure 222.

Figure 222. SPI block diagram

Usually, the SPI is connected to external devices through four pins:

• MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode
and receive data in master mode.

• MOSI: Master Out / Slave In data. This pin can be used to transmit data in master
mode and receive data in slave mode.

• SCK: Serial Clock output for SPI masters and input for SPI slaves.

• NSS: Slave select. This is an optional pin to select a slave device. This pin acts as a
‘chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard IO ports on
the master device. The NSS pin may also be used as an output if enabled (SSOE bit)
and driven low if the SPI is in master configuration. In this manner, all NSS pins from
devices connected to the Master NSS pin see a low level and become slaves when
they are configured in NSS hardware mode. When configured in master mode with
NSS configured as an input (MSTR=1 and SSOE=0) and if NSS is pulled low, the SPI
enters the master mode fault state: the MSTR bit is automatically cleared and the
device is configured in slave mode (refer to Section 21.3.10).

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 223.

MS51604V1

MOSI

MISO

Baud rate generator
SCK

Master control logic

Communication control

SPE BR2 BR1 BR0 MSTR CPOL CPHA

BR[2:0]

RXNE
IE

LSB
FIRST

BIDI
MODE

BIDI
OE

BSY OVR MOD
F RXNETXE

ERR
IE

TXE
IE

0 0

DFF

0 SSOE

CRCEN

0

RX
ONLY

CRC
Next

CRC
ERR

0

1

NSS

SPI_CR1

SPI_CR2

SPI_SR

TXDM
AEN

RXDM
AEN

Address and data bus

Read

Rx buffer

Shift register
LSB first

Tx buffer

Write

SSM SSI

RM0041 Rev 6 539/709

RM0041 Serial peripheral interface (SPI)

565

Figure 223. Single master/ single slave application

1. Here, the NSS pin is configured as an input.

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via the MOSI pin, the slave device responds via the MISO pin. This
implies full-duplex communication with both data out and data in synchronized with the
same clock signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

Hardware or software slave select management can be set using the SSM bit in the
SPI_CR1 register.

• Software NSS management (SSM = 1)

The slave select information is driven internally by the value of the SSI bit in the
SPI_CR1 register. The external NSS pin remains free for other application uses.

• Hardware NSS management (SSM = 0)

Two configurations are possible depending on the NSS output configuration (SSOE bit
in register SPI_CR2).

– NSS output enabled (SSM = 0, SSOE = 1)

This configuration is used only when the device operates in master mode. The
NSS signal is driven low when the master starts the communication and is kept
low until the SPI is disabled.

– NSS output disabled (SSM = 0, SSOE = 0)

This configuration allows multimaster capability for devices operating in master
mode. For devices set as slave, the NSS pin acts as a classical NSS input: the
slave is selected when NSS is low and deselected when NSS high.

8-bit shift register

SPI clock
generator

8-bit shift registerMISO

MOSI MOSI

MISO

SCK SCK

SlaveMaster

NSS(1) NSS(1)
VDD

MSBit LSBit MSBit LSBit

Not used if NSS is managed
 by software

ai14745

Serial peripheral interface (SPI) RM0041

540/709 RM0041 Rev 6

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPI_CR1 register. The CPOL (clock polarity) bit controls the steady state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the
CPOL bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data are
latched on the occurrence of the second clock transition. If the CPHA bit is reset, the first
edge on the SCK pin (falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the
MSBit capture strobe. Data are latched on the occurrence of the first clock transition.

The combination of the CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 224, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin,
the MISO pin, the MOSI pin are directly connected between the master and the slave
device.

Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

Master and slave must be programmed with the same timing mode.

The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

The Data Frame Format (8- or 16-bit) is selected through the DFF bit in SPI_CR1 register,
and determines the data length during transmission/reception.

RM0041 Rev 6 541/709

RM0041 Serial peripheral interface (SPI)

565

Figure 224. Data clock timing diagram

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Data frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 register.

Each data frame is 8 or 16 bits long depending on the size of the data programmed using
the DFF bit in the SPI_CR1 register. The selected data frame format is applicable for
transmission and/or reception.

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBitMISO

MOSI

NSS
(to slave)

Capture strobe

CPHA =1

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBitMISO

MOSI

NSS
(to slave)

Capture strobe

CPHA =0

ai17154d

Serial peripheral interface (SPI) RM0041

542/709 RM0041 Rev 6

21.3.2 Configuring the SPI in slave mode

In the slave configuration, the serial clock is received on the SCK pin from the master
device. The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data
transfer rate.

Note: It is recommended to enable the SPI slave before the master sends the clock. If not,
undesired data transmission might occur. The data register of the slave needs to be ready
before the first edge of the communication clock or before the end of the ongoing
communication. It is mandatory to have the polarity of the communication clock set to the
steady state value before the slave and the master are enabled.

Follow the procedure below to configure the SPI in slave mode:

Procedure

1. Set the DFF bit to define 8- or 16-bit data frame format

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 224). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device.

3. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device.

4. In Hardware mode (refer to Slave select (NSS) pin management), the NSS pin must be
connected to a low level signal during the complete byte transmit sequence. In NSS
software mode, set the SSM bit and clear the SSI bit in the SPI_CR1 register.

5. Clear the MSTR bit and set the SPE bit (both in the SPI_CR1 register) to assign the
pins to alternate functions.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence

The data byte is parallel-loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining bits (the 7 bits in 8-bit data frame
format, and the 15 bits in 16-bit data frame format) are loaded into the shift-register. The
TXE flag in the SPI_SR register is set on the transfer of data from the Tx Buffer to the shift
register and an interrupt is generated if the TXEIE bit in the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

• The Data in shift register is transferred to Rx Buffer and the RXNE flag (SPI_SR
register) is set

• An Interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

RM0041 Rev 6 543/709

RM0041 Serial peripheral interface (SPI)

565

21.3.3 Configuring the SPI in master mode

In the master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 224).

3. Set the DFF bit to define 8- or 16-bit data frame format

4. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format.

5. If the NSS pin is required in input mode, in hardware mode, connect the NSS pin to a
high-level signal during the complete byte transmit sequence. In NSS software mode,
set the SSM and SSI bits in the SPI_CR1 register. If the NSS pin is required in output
mode, the SSOE bit only should be set.

6. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high-level signal).

In this configuration the MOSI pin is a data output and the MISO pin is a data input.

Transmit sequence

The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel-loaded into the shift register (from the internal bus) during the first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag is set on the transfer
of data from the Tx Buffer to the shift register and an interrupt is generated if the TXEIE bit in
the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

• The data in the shift register is transferred to the RX Buffer and the RXNE flag is set

• An interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the
shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1 before any
attempt to write the Tx buffer is made.

Note: When a master is communicating with SPI slaves which need to be de-selected between
transmissions, the NSS pin must be configured as GPIO or another GPIO must be used and
toggled by software.

21.3.4 Configuring the SPI for half-duplex communication

The SPI is capable of operating in half-duplex mode in 2 configurations.

• 1 clock and 1 bidirectional data wire

• 1 clock and 1 data wire (receive-only or transmit-only)

Serial peripheral interface (SPI) RM0041

544/709 RM0041 Rev 6

1 clock and 1 bidirectional data wire (BIDIMODE = 1)

This mode is enabled by setting the BIDIMODE bit in the SPI_CR1 register. In this mode
SCK is used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BIDIOE bit in the
SPI_CR1 register. When this bit is 1, the data line is output otherwise it is input.

1 clock and 1 unidirectional data wire (BIDIMODE = 0)

In this mode, the application can use the SPI either in transmit-only mode or in receive-only
mode.

• Transmit-only mode is similar to full-duplex mode (BIDIMODE=0, RXONLY=0): the
data are transmitted on the transmit pin (MOSI in master mode or MISO in slave mode)
and the receive pin (MISO in master mode or MOSI in slave mode) can be used as a
general-purpose IO. In this case, the application just needs to ignore the Rx buffer (if
the data register is read, it does not contain the received value).

• In receive-only mode, the application can disable the SPI output function by setting the
RXONLY bit in the SPI_CR1 register. In this case, it frees the transmit IO pin (MOSI in
master mode or MISO in slave mode), so it can be used for other purposes.

To start the communication in receive-only mode, configure and enable the SPI:

• In master mode, the communication starts immediately and stops when the SPE bit is
cleared and the current reception stops. There is no need to read the BSY flag in this
mode. It is always set when an SPI communication is ongoing.

• In slave mode, the SPI continues to receive as long as the NSS is pulled down (or the
SSI bit is cleared in NSS software mode) and the SCK is running.

21.3.5 Data transmission and reception procedures

Rx and Tx buffers

In reception, data are received and then stored into an internal Rx buffer while In
transmission, data are first stored into an internal Tx buffer before being transmitted.

A read access of the SPI_DR register returns the Rx buffered value whereas a write access
to the SPI_DR stores the written data into the Tx buffer.

RM0041 Rev 6 545/709

RM0041 Serial peripheral interface (SPI)

565

Start sequence in master mode

• In full-duplex (BIDIMODE=0 and RXONLY=0)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– At the same time, the received data on the MISO pin is shifted in serially to the 8-
bit shift register and then parallel loaded into the SPI_DR register (Rx buffer).

• In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins as soon as SPE=1

– Only the receiver is activated and the received data on the MISO pin are shifted in
serially to the 8-bit shift register and then parallel loaded into the SPI_DR register
(Rx buffer).

• In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– No data are received.

• In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins as soon as SPE=1 and BIDIOE=0.

– The received data on the MOSI pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MOSI
pin.

Start sequence in slave mode

• In full-duplex mode (BIDIMODE=0 and RXONLY=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– At the same time, the data are parallel loaded from the Tx buffer into the 8-bit shift
register during the first bit transmission, and then shifted out serially to the MISO
pin. The software must have written the data to be sent before the SPI master
device initiates the transfer.

• In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

• In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when the slave device receives the clock signal and the first
bit in the Tx buffer is transmitted on the MISO pin.

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MISO pin. The

Serial peripheral interface (SPI) RM0041

546/709 RM0041 Rev 6

software must have written the data to be sent before the SPI master device
initiates the transfer.

– No data are received.

• In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MISO pin.

– The received data on the MISO pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

Handling data transmission and reception

The TXE flag (Tx buffer empty) is set when the data are transferred from the Tx buffer to the
shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data.
An interrupt can be generated if the TXEIE bit in the SPI_CR2 register is set. Clearing the
TXE bit is performed by writing to the SPI_DR register.

Note: The software must ensure that the TXE flag is set to 1 before attempting to write to the Tx
buffer. Otherwise, it overwrites the data previously written to the Tx buffer.

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
are transferred from the shift register to the Rx buffer. It indicates that data are ready to be
read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the
SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR
register.

For some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

Full-duplex transmit and receive procedure in master or slave mode (BIDIMODE=0 and
RXONLY=0)

The software has to follow this procedure to transmit and receive data (see Figure 225 and
Figure 226):

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE
flag).

3. Wait until TXE=1 and write the second data item to be transmitted. Then wait until
RXNE=1 and read the SPI_DR to get the first received data item (this clears the RXNE
bit). Repeat this operation for each data item to be transmitted/received until the n–1
received data.

4. Wait until RXNE=1 and read the last received data.

5. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edges of the RXNE or TXE flag.

RM0041 Rev 6 547/709

RM0041 Serial peripheral interface (SPI)

565

Figure 225. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and
RXONLY=0) in case of continuous transfers

MISO/MOSI (in)

Tx buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Master mode with CPOL=1, CPHA=1

0xF1

 RXNE flag

(write SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA1 = 0xF1 DATA2 = 0xF2 DATA3 = 0xF3

(read SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17343

Serial peripheral interface (SPI) RM0041

548/709 RM0041 Rev 6

Figure 226. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0,
RXONLY=0) in case of continuous transfers

Transmit-only procedure (BIDIMODE=0 RXONLY=0)

In this mode, the procedure can be reduced as described below and the BSY bit can be
used to wait until the completion of the transmission (see Figure 227 and Figure 228).

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to send into the SPI_DR register (this clears the TXE bit).

3. Wait until TXE=1 and write the next data item to be transmitted. Repeat this step for
each data item to be transmitted.

4. After writing the last data item into the SPI_DR register, wait until TXE=1, then wait until
BSY=0, this indicates that the transmission of the last data is complete.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of the TXE flag.

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, in transmit-only
mode, it is mandatory to wait first until TXE is set and then until BSY is cleared after writing
the last data.

After transmitting two data items in transmit-only mode, the OVR flag is set in the SPI_SR
register since the received data are never read.

0xF1

set by cleared by software

MISO/MOSI (in)

Tx buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Slave mode with CPOL=1, CPHA=1

 RXNE flag

(write to SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

(read from SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17344

RM0041 Rev 6 549/709

RM0041 Serial peripheral interface (SPI)

565

Figure 227. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0)
in case of continuous transfers

Figure 228. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of
continuous transfers

Bidirectional transmit procedure (BIDIMODE=1 and BIDIOE=1)

In this mode, the procedure is similar to the procedure in Transmit-only mode except that
the BIDIMODE and BIDIOE bits both have to be set in the SPI_CR2 register before enabling
the SPI.

Unidirectional receive-only procedure (BIDIMODE=0 and RXONLY=1)

In this mode, the procedure can be reduced as described below (see Figure 229):

0xF1Tx buffer

TXE flag

0xF2

BSY flag

0xF3

software writes
0xF1 into
SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

reset by hardware

Example in Master mode with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17345

0xF1Tx buffer

TXE flag

0xF2

BSY flag

0xF3

software writes
0xF1 into
SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

reset by hardware

Example in slave mode with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17346

Serial peripheral interface (SPI) RM0041

550/709 RM0041 Rev 6

1. Set the RXONLY bit in the SPI_CR1 register.

2. Enable the SPI by setting the SPE bit to 1:

a) In master mode, this immediately activates the generation of the SCK clock, and
data are serially received until the SPI is disabled (SPE=0).

b) In slave mode, data are received when the SPI master device drives NSS low and
generates the SCK clock.

3. Wait until RXNE=1 and read the SPI_DR register to get the received data (this clears
the RXNE bit). Repeat this operation for each data item to be received.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edge of the RXNE flag.

Note: If it is required to disable the SPI after the last transfer, follow the recommendation
described in Section 21.3.8.

Figure 229. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1)
in case of continuous transfers

Bidirectional receive procedure (BIDIMODE=1 and BIDIOE=0)

In this mode, the procedure is similar to the Receive-only mode procedure except that the
BIDIMODE bit has to be set and the BIDIOE bit cleared in the SPI_CR2 register before
enabling the SPI.

Continuous and discontinuous transfers

When transmitting data in master mode, if the software is fast enough to detect each rising
edge of TXE (or TXE interrupt) and to immediately write to the SPI_DR register before the
ongoing data transfer is complete, the communication is said to be continuous. In this case,
there is no discontinuity in the generation of the SPI clock between each data item and the
BSY bit is never cleared between each data transfer.

On the contrary, if the software is not fast enough, this can lead to some discontinuities in
the communication. In this case, the BSY bit is cleared between each data transmission
(see Figure 230).

In Master receive-only mode (RXONLY=1), the communication is always continuous and
the BSY flag is always read at 1.

MISO/MOSI (in)
DATA 1 = 0xA1

software waits until RXNE=1
and reads 0xA1 from SPI_DR

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1, RXONLY=1

 RXNE flag

Rx buffer

set by hardware

(read from SPI_DR)
0xA1 0xA2 0xA3

software waits until RXNE=1
and reads 0xA2 from SPI_DR

software waits until RXNE=1
and reads 0xA3 from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17347

RM0041 Rev 6 551/709

RM0041 Serial peripheral interface (SPI)

565

In slave mode, the continuity of the communication is decided by the SPI master device. In
any case, even if the communication is continuous, the BSY flag goes low between each
transfer for a minimum duration of one SPI clock cycle (see Figure 228).

Figure 230. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0)
in case of discontinuous transfers

21.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. It is calculated on the sampling clock
edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

Note: This SPI offers two kinds of CRC calculation standard which depend directly on the data
frame format selected for the transmission and/or reception: 8-bit data (CR8) and 16-bit data
(CRC16).

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). In full duplex or transmitter
only mode, when the transfers are managed by the software (CPU mode), it is necessary to
write the bit CRCNEXT immediately after the last data to be transferred is written to the
SPI_DR. At the end of this last data transfer, the SPI_TXCRCR value is transmitted.

In receive only mode and when the transfers are managed by software (CPU mode), it is
necessary to write the CRCNEXT bit after the second last data has been received. The CRC
is received just after the last data reception and the CRC check is then performed.

At the end of data and CRC transfers, the CRCERR flag in the SPI_SR register is set if
corruption occurs during the transfer.

If data are present in the TX buffer, the CRC value is transmitted only after the transmission
of the data byte. During CRC transmission, the CRC calculator is switched off and the
register value remains unchanged.

SPI communication using the CRC is possible through the following procedure:

MOSI (out)

Tx buffer

DATA 1 = 0xF1

TXE flag

0xF1

BSY flag

0xF2

software writes 0xF1
into SPI_DR

software waits until TXE=1 but is
late to write 0xF2 into SPI_DR

software waits until TXE=1 but
is late to write 0xF3 into

SPI_DR

SCK

3Fx0 = 3 ATAD2Fx0 = 2 ATAD

Example with CPOL=1, CPHA=1

0xF3

software waits
until TXE=1

software waits until BSY=0

(write to SPI_DR)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17348

Serial peripheral interface (SPI) RM0041

552/709 RM0041 Rev 6

1. Program the CPOL, CPHA, LSBFirst, BR, SSM, SSI and MSTR values.

2. Program the polynomial in the SPI_CRCPR register.

3. Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers.

4. Enable the SPI by setting the SPE bit in the SPI_CR1 register.

5. Start the communication and sustain the communication until all but one byte or half-
word have been transmitted or received.

– In full duplex or transmitter-only mode, when the transfers are managed by
software, when writing the last byte or half word to the Tx buffer, set the
CRCNEXT bit in the SPI_CR1 register to indicate that the CRC is transmitted after
the transmission of the last byte.

– In receiver only mode, set the bit CRCNEXT just after the reception of the second
to last data to prepare the SPI to enter in CRC Phase at the end of the reception of
the last data. CRC calculation is frozen during the CRC transfer.

6. After the transfer of the last byte or half word, the SPI enters the CRC transfer and
check phase. In full duplex mode or receiver-only mode, the received CRC is
compared to the SPI_RXCRCR value. If the value does not match, the CRCERR flag in
SPI_SR is set and an interrupt can be generated when the ERRIE bit in the SPI_CR2
register is set.

Note: When the SPI is in slave mode, be careful to enable CRC calculation only when the clock is
stable, that is, when the clock is in the steady state. If not, a wrong CRC calculation may be
done. In fact, the CRC is sensitive to the SCK slave input clock as soon as CRCEN is set,
and this, whatever the value of the SPE bit.

With high bitrate frequencies, be careful when transmitting the CRC. As the number of used
CPU cycles has to be as low as possible in the CRC transfer phase, it is forbidden to call
software functions in the CRC transmission sequence to avoid errors in the last data and
CRC reception. In fact, CRCNEXT bit has to be written before the end of the
transmission/reception of the last data.

For high bit rate frequencies, it is advised to use the DMA mode to avoid the degradation of
the SPI speed performance due to CPU accesses impacting the SPI bandwidth.

When the devices are configured as slaves and the NSS hardware mode is used, the NSS
pin needs to be kept low between the data phase and the CRC phase.

When the SPI is configured in slave mode with the CRC feature enabled, CRC calculation
takes place even if a high level is applied on the NSS pin. This may happen for example in
case of a multislave environment where the communication master addresses slaves
alternately.

Between a slave deselection (high level on NSS) and a new slave selection (low level on
NSS), the CRC value should be cleared on both master and slave sides in order to
resynchronize the master and slave for their respective CRC calculation.

To clear the CRC, follow the procedure below:

1. Disable SPI (SPE = 0)

2. Clear the CRCEN bit

3. Set the CRCEN bit

4. Enable the SPI (SPE = 1)

RM0041 Rev 6 553/709

RM0041 Serial peripheral interface (SPI)

565

21.3.7 Status flags

Four status flags are provided for the application to completely monitor the state of the SPI
bus.

Tx buffer empty flag (TXE)

When it is set, this flag indicates that the Tx buffer is empty and the next data to be
transmitted can be loaded into the buffer. The TXE flag is cleared when writing to the
SPI_DR register.

Rx buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the Rx buffer. It is cleared
when SPI_DR is read.

BUSY flag

This BSY flag is set and cleared by hardware (writing to this flag has no effect). The BSY
flag indicates the state of the communication layer of the SPI.

When BSY is set, it indicates that the SPI is busy communicating. There is one exception in
master mode / bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the
BSY flag is kept low during reception.

The BSY flag is useful to detect the end of a transfer if the software wants to disable the SPI
and enter Halt mode (or disable the peripheral clock). This avoids corrupting the last
transfer. For this, the procedure described below must be strictly respected.

The BSY flag is also useful to avoid write collisions in a multimaster system.

The BSY flag is set when a transfer starts, with the exception of master mode / bidirectional
receive mode (MSTR=1 and BDM=1 and BDOE=0).

It is cleared:

• when a transfer is finished (except in master mode if the communication is continuous)

• when the SPI is disabled

• when a master mode fault occurs (MODF=1)

When communication is not continuous, the BSY flag is low between each communication.

When communication is continuous:

• in master mode, the BSY flag is kept high during all the transfers

• in slave mode, the BSY flag goes low for one SPI clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

Serial peripheral interface (SPI) RM0041

554/709 RM0041 Rev 6

21.3.8 Disabling the SPI

When a transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by clearing the SPE bit.

For some configurations, disabling the SPI and entering the Halt mode while a transfer is
ongoing can cause the current transfer to be corrupted and/or the BSY flag might become
unreliable.

To avoid any of those effects, it is recommended to respect the following procedure when
disabling the SPI:

In master or slave full-duplex mode (BIDIMODE=0, RXONLY=0)

1. Wait until RXNE=1 to receive the last data

2. Wait until TXE=1

3. Then wait until BSY=0

4. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master or slave unidirectional transmit-only mode (BIDIMODE=0,
RXONLY=0) or bidirectional transmit mode (BIDIMODE=1, BIDIOE=1)

After the last data is written into the SPI_DR register:

1. Wait until TXE=1

2. Then wait until BSY=0

3. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master unidirectional receive-only mode (MSTR=1, BIDIMODE=0,
RXONLY=1) or bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0)

This case must be managed in a particular way to ensure that the SPI does not initiate a
new transfer:

1. Wait for the second to last occurrence of RXNE=1 (n–1)

2. Then wait for one SPI clock cycle (using a software loop) before disabling the SPI
(SPE=0)

3. Then wait for the last RXNE=1 before entering the Halt mode (or disabling the
peripheral clock)

Note: In master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0), the BSY flag is
kept low during transfers.

In slave receive-only mode (MSTR=0, BIDIMODE=0, RXONLY=1) or
bidirectional receive mode (MSTR=0, BIDIMODE=1, BIDOE=0)

1. You can disable the SPI (write SPE=1) at any time: the current transfer completes
before the SPI is effectively disabled

2. Then, if you want to enter the Halt mode, you must first wait until BSY = 0 before
entering the Halt mode (or disabling the peripheral clock).

RM0041 Rev 6 555/709

RM0041 Serial peripheral interface (SPI)

565

21.3.9 SPI communication using DMA (direct memory addressing)

To operate at its maximum speed, the SPI needs to be fed with the data for transmission
and the data received on the Rx buffer should be read to avoid overrun. To facilitate the
transfers, the SPI features a DMA capability implementing a simple request/acknowledge
protocol.

A DMA access is requested when the enable bit in the SPI_CR2 register is enabled.
Separate requests must be issued to the Tx and Rx buffers (see Figure 231 and
Figure 232):

• In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPI_DR register (this clears the TXE flag).

• In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPI_DR register (this clears the RXNE flag).

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received are not read.

When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA
channel.

In transmission mode, when the DMA has written all the data to be transmitted (flag TCIF is
set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until TXE=1 and
then until BSY=0.

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, it is mandatory to
wait first until TXE=1 and then until BSY=0 after writing the last data.

Serial peripheral interface (SPI) RM0041

556/709 RM0041 Rev 6

Figure 231. Transmission using DMA

Figure 232. Reception using DMA

0xF1Tx buffer

TXE flag

0xF2

BSY flag

0xF3

set by hardware
clear by DMA write

set by hardware
cleared by DMA write set by hardware

set by hardware

SCK

reset

Example with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software configures the
DMA SPI Tx channel
to send 3 data items
and enables the SPI

DMA writes to SPI_DR

DMA request ignored by the DMA because

DMA TCIF flag
set by hardware clear by software

DMA writes
DATA1 into

SPI_DR

by hardware

DMA writes
DATA2 into

SPI_DR

DMA writes
DATA3 into

SPI_DR

software waits until BSY=0

(DMA transfer complete)

DMA transfer is
complete (TCIF=1 in

DMA_ISR)

software waits
until TXE=1

DMA transfer is complete

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17349

MISO/MOSI (in)
DATA 1 = 0xA1

software configures the
DMA SPI Rx channel
to receive 3 data items
and enables the SPI

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1

RXNE flag

Rx buffer

set by hardware

(read from SPI_DR) 0xA1 0xA2 0xA3

DMA request

DMA reads
DATA3 from

SPI_DR

flag DMA TCIF
set by hardware clear

by software

DMA read from SPI_DR

The DMA transfer is
complete (TCIF=1 in

DMA_ISR)

DMA reads
DATA2 from

SPI_DR

DMA reads
DATA1 from

SPI_DR

(DMA transfer complete)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

clear by DMA read

ai17350

RM0041 Rev 6 557/709

RM0041 Serial peripheral interface (SPI)

565

DMA capability with CRC

When SPI communication is enabled with CRC communication and DMA mode, the
transmission and reception of the CRC at the end of communication are automatic that is
without using the bit CRCNEXT. After the CRC reception, the CRC must be read in the
SPI_DR register to clear the RXNE flag.

At the end of data and CRC transfers, the CRCERR flag in SPI_SR is set if corruption
occurs during the transfer.

21.3.10 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in NSS
hardware mode) or SSI bit low (in NSS software mode), this automatically sets the MODF
bit. Master mode fault affects the SPI peripheral in the following ways:

• The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

• The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.

• The MSTR bit is cleared, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence.

As a security, hardware does not allow the setting of the SPE and MSTR bits while the
MODF bit is set.

In a slave device the MODF bit cannot be set. However, in a multimaster configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates
that there might have been a multimaster conflict for system control. An interrupt routine can
be used to recover cleanly from this state by performing a reset or returning to a default
state.

Overrun condition

An overrun condition occurs when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

• the OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents are not updated with the newly received data from
the master device. A read from the SPI_DR register returns this byte. All other subsequently
transmitted bytes are lost.

Clearing the OVR bit is done by a read from the SPI_DR register followed by a read access
to the SPI_SR register.

Serial peripheral interface (SPI) RM0041

558/709 RM0041 Rev 6

CRC error

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPI_CR1 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register does not match the receiver SPI_RXCRCR value.

21.3.11 SPI interrupts

Table 119. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Master mode fault event MODF

ERRIEOverrun error OVR

CRC error flag CRCERR

RM0041 Rev 6 559/709

RM0041 Serial peripheral interface (SPI)

565

21.4 SPI registers

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

21.4.1 SPI control register 1 (SPI_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT

DFF
RX

ONLY
SSM SSI

LSB
FIRST

SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 BIDIMODE: Bidirectional data mode enable

0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDImode bit selects the direction of transfer in bidirectional mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.

Bit 13 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation Enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation

Bit 12 CRCNEXT: CRC transfer next

0: Data phase (no CRC phase)
1: Next transfer is CRC (CRC phase)

Note: When the SPI is configured in full duplex or transmitter only modes, CRCNEXT must be
written as soon as the last data is written to the SPI_DR register.
When the SPI is configured in receiver only mode, CRCNEXT must be set after the
second last data reception.
This bit should be kept cleared when the transfers are managed by DMA.

Bit 11 DFF: Data frame format

0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation

Bit 10 RXONLY: Receive only

This bit combined with the BIDImode bit selects the direction of transfer in 2-line
unidirectional mode. This bit is also useful in a multislave system in which this particular
slave is not accessed, the output from the accessed slave is not corrupted.
0: Full duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Serial peripheral interface (SPI) RM0041

560/709 RM0041 Rev 6

21.4.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the
NSS pin and the IO value of the NSS pin is ignored.

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: This bit should not be changed when communication is ongoing.

Bit 6 SPE: SPI enable

0: Peripheral disabled
1: Peripheral enabled

Note: When disabling the SPI, follow the procedure described in Section 21.3.8: Disabling the
SPI.

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.

Bit 2 MSTR: Master selection

0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TXEIE RXNEIE ERRIE Res. Res. SSOE TXDMAEN RXDMAEN

rw rw rw rw rw rw

RM0041 Rev 6 561/709

RM0041 Serial peripheral interface (SPI)

565

21.4.3 SPI status register (SPI_SR)

Address offset: 0x08

Reset value: 0x0002

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs).
0: Error interrupt is masked
1: Error interrupt is enabled

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 SSOE: SS output enable

0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work
in a multimaster environment.

Bit 1 TXDMAEN: Tx buffer DMA enable

When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable

When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BSY OVR MODF

CRC
ERR Reserved

TXE RXNE

r r r rc_w0 r r

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BSY: Busy flag

0: SPI not busy
1: SPI is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: BSY flag must be used with caution: refer to Section 21.3.7 and Section 21.3.8.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.

Serial peripheral interface (SPI) RM0041

562/709 RM0041 Rev 6

21.4.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 21.3.10 on
page 557 for the software sequence.

Bit 4 CRCERR: CRC error flag

0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Bits 3:2 Reserved

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for
reading (Receive buffer). A write to the data register writes into the Tx buffer and a read
from the data register returns the value held in the Rx buffer.

Note: These notes apply to SPI mode:

Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data
sent or received is either 8-bit or 16-bit. This selection has to be made before enabling
the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register
(SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of
the register (SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is
used for transmission/reception.

RM0041 Rev 6 563/709

RM0041 Serial peripheral interface (SPI)

565

21.4.5 SPI CRC polynomial register (SPI_CRCPR)

Address offset: 0x10

Reset value: 0x0007

21.4.6 SPI RX CRC register (SPI_RXCRCR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register

When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in
the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.

Serial peripheral interface (SPI) RM0041

564/709 RM0041 Rev 6

21.4.7 SPI TX CRC register (SPI_TXCRCR)

Address offset: 0x18

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 TXCRC[15:0]: Tx CRC register

When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1
is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY flag is set could return an incorrect value.

RM0041 Rev 6 565/709

RM0041 Serial peripheral interface (SPI)

565

21.4.8 SPI register map

The table provides shows the SPI register map and reset values.

Refer to Section 3.3: Memory map for the register boundary addresses.

Table 120. SPI register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reserved

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N

C
R

C
N

E
X

T

D
F

F

R
X

O
N

LY

S
S

M

S
S

I

L
S

B
F

IR
S

T

S
P

E BR [2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

Reserved T
X

E
IE

R
X

N
E

IE

E
R

R
IE

R
e

se
rv

e
d

S
S

O
E

T
X

D
M

A
E

N

R
X

D
M

A
E

N

Reset value 0 0 0 0 0 0

0x08
SPI_SR

Reserved B
S

Y

O
V

R

M
O

D
F

C
R

C
E

R
R

R
es

er
ve

d

T
X

E

R
X

N
E

Reset value 0 0 0 0 1 0

0x0C
SPI_DR

Reserved
DR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

Reserved
CRCPOLY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

Reserved
RxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

Reserved
TxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inter-integrated circuit (I2C) interface RM0041

566/709 RM0041 Rev 6

22 Inter-integrated circuit (I2C) interface

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

22.1 I2C introduction

I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports the standard mode (Sm, up to
100 kHz) and Fm mode (Fm, up to 400 kHz).

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

22.2 I2C main features

• Parallel-bus/I2C protocol converter

• Multimaster capability: the same interface can act as Master or Slave

• I2C Master features:

– Clock generation

– Start and Stop generation

• I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

• Generation and detection of 7-bit/10-bit addressing and General Call

• Supports different communication speeds:

– Standard Speed (up to 100 kHz)

– Fast Speed (up to 400 kHz)

• Analog noise filter

• Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

• Error flags:

RM0041 Rev 6 567/709

RM0041 Inter-integrated circuit (I2C) interface

598

– Arbitration lost condition for master mode

– Acknowledgment failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

• 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

• Optional clock stretching

• 1-byte buffer with DMA capability

• Configurable PEC (packet error checking) generation or verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

• SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

• PMBus Compatibility

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

22.3 I2C functional description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

22.3.1 Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Inter-integrated circuit (I2C) interface RM0041

568/709 RM0041 Rev 6

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 233.

Figure 233. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 234.

MS19854V1

SDA

SCL

Start
condition

Stop
condition

MSB ACK

1 2 8 9

RM0041 Rev 6 569/709

RM0041 Inter-integrated circuit (I2C) interface

598

Figure 234. I2C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

22.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Data shift register

Comparator

Own address register

Clock control

Status registers

Control registers

Control

Clock
control

Data
control

SCL

logic

Dual address register

Data register

PEC register

Interrupts

PEC calculation

SMBA

SDA

Register (CCR)

(SR1&SR2)

(CR1&CR2)

DMA requests & ACK
MS30035V1

Noise
filter

Noise
filter

Inter-integrated circuit (I2C) interface RM0041

570/709 RM0041 Rev 6

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

• If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It enters Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 235 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

• The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

Figure 235. Transfer sequence diagram for slave transmitter

7-bit slave transmitter

10-bit slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV3-1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV3: TxE=1, shift register not empty, data register empty, cleared by writing DR
EV3-2: AF=1; AF is cleared by writing ‘0’ in AF bit of SR1 register.

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3-1 EV3 EV3 EV3 EV3-2

S Header A Address A

EV1

Sr Header A Data1 A DataN NA P

EV1 EV3_1 EV3 EV3 EV3-2

ai18209

RM0041 Rev 6 571/709

RM0041 Inter-integrated circuit (I2C) interface

598

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from
I2C_SR1 followed by a read from the I2C_DR register, stretching SCL low (see Figure 236
Transfer sequencing).

Figure 236. Transfer sequence diagram for slave receiver

1. The EV1 event stretches SCL low until the end of the corresponding software sequence.

2. The EV2 software sequence must be completed before the end of the current byte transfer

3. After checking the SR1 register content, the user should perform the complete clearing sequence for each
flag found set.
Thus, for ADDR and STOPF flags, the following sequence is required inside the I2C interrupt routine:
READ SR1
if (ADDR == 1) {READ SR1; READ SR2}
if (STOPF == 1) {READ SR1; WRITE CR1}
The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found set.

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

• The STOPF bit and generates an interrupt if the ITEVFEN bit is set.

The STOPF bit is cleared by a read of the SR1 register followed by a write to the CR1
register (see EV4 in Figure 236).

22.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.

7-bit slave receiver

10-bit slave receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV2: RxNE=1 cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing to the CR1 register

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

ai18208

Inter-integrated circuit (I2C) interface RM0041

572/709 RM0041 Rev 6

Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

• Program the peripheral input clock in I2C_CR2 register in order to generate correct
timings

• Configure the clock control registers

• Configure the rise time register

• Program the I2C_CR1 register to enable the peripheral

• Set the START bit in the I2C_CR1 register to generate a Start condition

The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

SCL master clock generation

The CCR bits are used to generate the high and low level of the SCL clock, starting from the
generation of the rising and falling edge (respectively). As a slave may stretch the SCL line,
the peripheral checks the SCL input from the bus at the end of the time programmed in
TRISE bits after rising edge generation.

• If the SCL line is low, it means that a slave is stretching the bus, and the high level
counter stops until the SCL line is detected high. This allows to guarantee the minimum
HIGH period of the SCL clock parameter.

• If the SCL line is high, the high level counter keeps on counting.

Indeed, the feedback loop from the SCL rising edge generation by the peripheral to the SCL
rising edge detection by the peripheral takes time even if no slave stretches the clock. This
loopback duration is linked to the SCL rising time (impacting SCL VIH input detection), plus
delay due to the noise filter present on the SCL input path, plus delay due to internal SCL
input synchronization with APB clock. The maximum time used by the feedback loop is
programmed in the TRISE bits, so that the SCL frequency remains stable whatever the SCL
rising time.

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (MSL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

• The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 237 and Figure 238 Transfer sequencing EV5).

RM0041 Rev 6 573/709

RM0041 Inter-integrated circuit (I2C) interface

598

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

• In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 237 and Figure 238 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 237 and Figure 238 Transfer sequencing).

• In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 237 and Figure 238 Transfer sequencing).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

• In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

• In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 237 Transfer
sequencing EV8_1).

When the acknowledge pulse is received, the TxE bit is set by hardware and an interrupt is
generated if the ITEVFEN and ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a read from I2C_SR1
followed bya write to I2C_DR, stretching SCL low.

Inter-integrated circuit (I2C) interface RM0041

574/709 RM0041 Rev 6

Closing the communication

After the last byte is written to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 237 Transfer sequencing EV8_2). The interface automatically
goes back to slave mode (MSL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 237. Transfer sequence diagram for master transmitter

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

1. An acknowledge pulse if the ACK bit is set

2. The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 238 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the DR register, stretching SCL low.

Closing the communication

Method 1: This method is for the case when the I2C is used with interrupts that have the
highest priority in the application.

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Restart condition.

7-bit master transmitter

10-bit master transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN = 1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2.
EV8_1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV8: TxE=1, shift register not empty, data register empty, cleared by writing DR register.
EV8_2: TxE=1, BTF = 1, Program Stop request. TxE and BTF are cleared by hardware by the Stop condition
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8_1 EV8 EV8 EV8 EV8_2

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8_1 EV8 EV8 EV8_2

ai15881b

Notes: 1- The EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software sequence.
 2- The EV8 software sequence must complete before the end of the current byte transfer. In case EV8 software

 sequence can not be managed before the current byte end of transfer, it is recommended to use BTF instead
of TXE with the drawback of slowing the communication.

RM0041 Rev 6 575/709

RM0041 Inter-integrated circuit (I2C) interface

598

1. To generate the nonacknowledge pulse after the last received data byte, the ACK bit
must be cleared just after reading the second last data byte (after second last RxNE
event).

2. To generate the Stop/Restart condition, software must set the STOP/START bit just
after reading the second last data byte (after the second last RxNE event).

3. In case a single byte has to be received, the Acknowledge disable and the Stop
condition generation are made just after EV6 (in EV6_1, just after ADDR is cleared).

After the Stop condition generation, the interface goes automatically back to slave mode
(MSL bit cleared).

Figure 238. Method 1: transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 software sequence must complete before the end of the current byte transfer. In case EV7
software sequence can not be managed before the current byte end of transfer, it is recommended to use
BTF instead of RXNE with the drawback of slowing the communication.

4. The EV6_1 or EV7_1 software sequence must complete before the ACK pulse of the current byte transfer.

Method 2: This method is for the case when the I2C is used with interrupts that do not have
the highest priority in the application or when the I2C is used with polling.

With this method, DataN_2 is not read, so that after DataN_1, the communication is
stretched (both RxNE and BTF are set). Then, clear the ACK bit before reading DataN-2 in
DR to ensure it is be cleared before the DataN Acknowledge pulse. After that, just after
reading DataN_2, set the STOP/ START bit and read DataN_1. After RxNE is set, read
DataN. This is illustrated below:

7-bit master receiver

10-bit master receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)
EV5: SB=1, cleared by reading SR1 register followed by writing DR register.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2. In 10-bit master receiver mode, this se-
quence should be followed by writing CR2 with START = 1.

EV7: RxNE=1 cleared by reading DR register.
EV7_1: RxNE=1 cleared by reading DR register, program ACK=0 and STOP request
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A(1) Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7_1 EV7

S Header A Address A

EV5 EV9 EV6

Sr Header A Data1 A(1)

.....
EV5 EV6 EV7EV6_1

EV6_1: no associated flag event, used for 1 byte reception only. The Acknowledge disable and Stop condition
generation are made just after EV6, that is after ADDR is cleared.

Data2 A

EV7

DataN NA P

EV7_1 EV7

ai15882

EV6_1

Inter-integrated circuit (I2C) interface RM0041

576/709 RM0041 Rev 6

Figure 239. Method 2: transfer sequence diagram for master receiver when N>2

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. The EV7 software sequence must complete before the end of the current byte transfer.In case EV7
software sequence can not be managed before the current byte end of transfer, it is recommended to use
BTF instead of RXNE with the drawback of slowing the communication.

When 3 bytes remain to be read:

• RxNE = 1 => Nothing (DataN-2 not read).

• DataN-1 received

• BTF = 1 because both shift and data registers are full: DataN-2 in DR and DataN-1 in
the shift register => SCL tied low: no other data will be received on the bus.

• Clear ACK bit

• Read DataN-2 in DR => This will launch the DataN reception in the shift register

• DataN received (with a NACK)

• Program START/STOP

• Read DataN-1

• RxNE = 1

• Read DataN

AAddressS

EV5 EV6

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR2.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV7: RxNE=1, cleared by reading DR register
EV7_2: BTF = 1, DataN-2 in DR and DataN-1 in shift register, program ACK = 0, Read DataN-2 in DR.
Program STOP = 1, read DataN-1.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

AAddress

EV6

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

RM0041 Rev 6 577/709

RM0041 Inter-integrated circuit (I2C) interface

598

The procedure described above is valid for N>2. The cases where a single byte or two bytes
are to be received should be handled differently, as described below:

• Case of a single byte to be received:

– In the ADDR event, clear the ACK bit.

– Clear ADDR

– Program the STOP/START bit.

– Read the data after the RxNE flag is set.

• Case of two bytes to be received:

– Set POS and ACK

– Wait for the ADDR flag to be set

– Clear ADDR

– Clear ACK

– Wait for BTF to be set

– Program STOP

– Read DR twice

Figure 240. Method 2: transfer sequence diagram for master receiver when N=2

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. The EV6_1 software sequence must complete before the ACK pulse of the current byte transfer.

AAddressS

EV5 EV6

AData1 Data2

EV7_3

NA P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR2.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV6_1: No associated flag event. The acknowledge disable should be done just after EV6, that is after ADDR is cleared.

EVx = Event (with interrupt if ITEVFEN = 1)

EV6_1

EV7_3: BTF = 1, program STOP = 1, read DR twice (Read Data1 and Data2) just after programming the STOP.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

AData1 Data2

EV7_3

NA P

EV6_1

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

Inter-integrated circuit (I2C) interface RM0041

578/709 RM0041 Rev 6

Figure 241. Method 2: transfer sequence diagram for master receiver when N=1

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

22.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external Stop or Start condition during
an address or a data transfer. In this case:

• the BERR bit is set and an interrupt is generated if the ITERREN bit is set

• in Slave mode: data are discarded and the lines are released by hardware:

– in case of a misplaced Start, the slave considers it is a restart and waits for an
address, or a Stop condition

– in case of a misplaced Stop, the slave behaves like for a Stop condition and the
lines are released by hardware

• In Master mode: the lines are not released and the state of the current transmission is
not affected. It is up to the software to abort or not the current transmission

Acknowledge failure (AF)

This error occurs when the interface detects a nonacknowledge bit. In this case:

• the AF bit is set and an interrupt is generated if the ITERREN bit is set

• a transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop or repeated Start condition must be generated by software

AAddressS

EV5

NAData1

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.

EV6_3: ADDR = 1, program ACK = 0, clear ADDR by reading SR1 register followed by reading SR2 register, program

 .

EV6_3

STOP =1 just after ADDR is cleared.
Note: The EV6_3 software sequence must complete before the current byte end of transfer.

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

7- bit master receiver

NAData1

EV7

P

EV6_3

AHeaderSr

EV5

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

EV7: RxNE =1, cleared by reading DR register.

EV6: ADDR =1, cleared by reading SR1 resister followed by reading SR2 register.

RM0041 Rev 6 579/709

RM0041 Inter-integrated circuit (I2C) interface

598

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case

• the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

• the I2C Interface goes automatically back to slave mode (the MSL bit is cleared). When
the I2C loses the arbitration, it is not able to acknowledge its slave address in the same
transfer, but it can acknowledge it after a repeated Start from the winning master.

• lines are released by hardware

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

• The last received byte is lost.

• In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

• The same byte in the DR register is sent again.

• The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

22.3.5 SDA/SCL line control

• If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data register (both buffer and shift register are full).

• If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte is sent again.

– Write Collision not managed.

Inter-integrated circuit (I2C) interface RM0041

580/709 RM0041 Rev 6

22.3.6 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized
master that provides the main interface to the system's CPU. A host must be a master-slave
and must support the SMBus host notify protocol. Only one host is allowed in a system.

Similarities between SMBus and I2C

• 2-wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

• Master-slave communication, Master provides clock

• Multi master capability

• SMBus data format similar to I2C 7-bit addressing format (Figure 233).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification version. 2.0 (http://smbus.org/).

Table 121. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types

Different bus protocols (quick command, process
call etc.)

No bus protocols

RM0041 Rev 6 581/709

RM0041 Inter-integrated circuit (I2C) interface

598

Bus protocols

The SMBus specification supports up to nine bus protocols. For more details of these
protocols and SMBus address types, refer to SMBus specification version. 2.0. These
protocols should be implemented by the user software.

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

• Address assignment uses the standard SMBus physical layer arbitration mechanism

• Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

• No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

• Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128-bit UDID and more information on ARP, refer to SMBus specification
version 2.0.

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are.
SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with
the SMBus are two bytes long.

A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT
bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all
SMBA devices through the Alert Response Address (known as ARA having a value 0001
100X). Only the device(s) which pulled SMBA low acknowledge the Alert Response
Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The
host performs a modified Receive Byte operation. The 7 bit device address provided by the
slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can
be a zero or one.

If more than one device pulls SMBA low, the highest priority (lowest address) device wins
communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBA pull-down. If the
host still sees SMBA low when the message transfer is complete, it knows to read the ARA
again.
A host which does not implement the SMBA signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification version 2.0.

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:

Inter-integrated circuit (I2C) interface RM0041

582/709 RM0041 Rev 6

SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification version 2.0.

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

• Set the SMBus bit in the I2C_CR1 register

• Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 22.3.3. Otherwise, follow the sequence in Section 22.3.2.

The application has to control the various SMBus protocols by software.

• SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

• SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

• SMB Alert Response Address acknowledged if SMBALERT=1

22.3.7 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data register becoming empty in transmission and Data register becoming full
in reception. The DMA must be initialized and enabled before the I2C data transfer. The
DMAEN bit must be set in the I2C_CR2 register before the ADDR event. In master mode or
in slave mode when clock stretching is enabled, the DMAEN bit can also be set during the
ADDR event, before clearing the ADDR flag. The DMA request must be served before the
end of the current byte transfer. When the number of data transfers which has been
programmed for the corresponding DMA stream is reached, the DMA controller sends an
End of Transfer EOT signal to the I2C interface and generates a Transfer Complete interrupt
if enabled:

• Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

• Master receiver: when the number of bytes to be received is equal to or greater than
two, the DMA controller sends a hardware signal, EOT_1, corresponding to the last but
one data byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set,
I2C automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data are loaded from a Memory area configured using the DMA peripheral (refer to
the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
stream x for I2C transmission (where x is the stream number), perform the following
sequence:

RM0041 Rev 6 583/709

RM0041 Inter-integrated circuit (I2C) interface

598

1. Set the I2C_DR register address in the DMA_SxPAR register. The data are moved to
this address from the memory after each TxE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data are loaded into I2C_DR from this
memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each TxE event, this value is decremented.

4. Configure the DMA stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Set the DIR bit in the DMA_SxCR register and configure interrupts after half transfer or
full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data are loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
stream x for I2C reception (where x is the stream number), perform the following sequence:

1. Set the I2C_DR register address in DMA_SxPAR register. The data are moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data are loaded from the I2C_DR register to
this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each RxNE event, this value is decremented.

4. Configure the stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Reset the DIR bit and configure interrupts in the DMA_SxCR register after half transfer
or full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

Inter-integrated circuit (I2C) interface RM0041

584/709 RM0041 Rev 6

22.3.8 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

• PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC is transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result.The PEC must
be set before the ACK pulse of the current byte reception.

• A PECERR error flag/interrupt is also available in the I2C_SR1 register.

• If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it automatically considers the next byte as a PEC and checks it. A DMA
request is generated after PEC reception.

• To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

• PEC calculation is corrupted by an arbitration loss.

22.4 I2C interrupts

The table below gives the list of I2C interrupt requests.

Table 122. I2C Interrupt requests

Interrupt event Event flag Enable control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

RM0041 Rev 6 585/709

RM0041 Inter-integrated circuit (I2C) interface

598

Note: SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically OR-ed on the same interrupt
channel.

BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically OR-ed on the
same interrupt channel.

Figure 242. I2C interrupt mapping diagram

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

Table 122. I2C Interrupt requests (continued)

Interrupt event Event flag Enable control bit

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBALERT

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

MS42082V1

Inter-integrated circuit (I2C) interface RM0041

586/709 RM0041 Rev 6

22.5 I2C debug mode

When the microcontroller enters the debug mode (Cortex®-M3 core halted), the SMBUS
timeout either continues to work normally or stops, depending on the
DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details,
refer to Section 25.15.2: Debug support for timers, watchdog and I2C.

22.6 I2C registers

Refer to for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

22.6.1 I2C Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWRST
Res.

ALERT PEC POS ACK STOP START
NO

STRETCH
ENGC ENPEC ENARP

SMB
TYPE Res.

SMBU
S

PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an
example, if the BUSY bit is set and remains locked due to a glitch on the bus, the
SWRST bit can be used to exit from this state.

Bit 14 Reserved, must be kept at reset value

Bit 13 ALERT: SMBus alert

This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBA pin high. Alert Response Address Header followed by NACK.
1: Drives SMBA pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

RM0041 Rev 6 587/709

RM0041 Inter-integrated circuit (I2C) interface

598

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.
0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which is received in the shift register. The
PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit is used when the procedure for reception of 2 bytes (see Method 2:
transfer sequence diagram for master receiver when N=2) is followed. It must be
configured before data reception starts. In this case, to NACK the 2nd byte, the ACK bit
must be cleared just after ADDR is cleared. To check the 2nd byte as PEC, the PEC bit
must be set during the ADDR stretch event after configuring the POS bit.

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable

0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Bit 4 ENARP: ARP enable

0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Inter-integrated circuit (I2C) interface RM0041

588/709 RM0041 Rev 6

Note: When the STOP, START or PEC bit is set, the software must not perform any write access
to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a
second STOP, START or PEC request.

22.6.2 I2C Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

Bit 2 Reserved, must be kept at reset value

Bit 1 SMBUS: SMBus mode

0: I2C mode
1: SMBus mode

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LAST DMAEN ITBUFEN ITEVTEN ITERREN

Reserved
FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1: TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

RM0041 Rev 6 589/709

RM0041 Inter-integrated circuit (I2C) interface

598

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled
This interrupt is generated when:

– SB = 1 (Master)

– ADDR = 1 (Master/Slave)

– ADD10= 1 (Master)

– STOPF = 1 (Slave)

– BTF = 1 with no TxE or RxNE event

– TxE event to 1 if ITBUFEN = 1

– RxNE event to 1if ITBUFEN = 1

Bit 8 ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled
This interrupt is generated when:

– BERR = 1

– ARLO = 1

– AF = 1

– OVR = 1

– PECERR = 1

– TIMEOUT = 1

– SMBALERT = 1

Bits 7:6 Reserved, must be kept at reset value

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The FREQ bits must be configured with the APB clock frequency value (I2C peripheral
connected to APB). The FREQ field is used by the peripheral to generate data setup and
hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz,
the maximum frequency is limited by the maximum APB frequency and cannot exceed
50 MHz (peripheral intrinsic maximum limit).
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b110010: 50 MHz
Higher than 0b101010: Not allowed

Inter-integrated circuit (I2C) interface RM0041

590/709 RM0041 Rev 6

22.6.3 I2C Own address register 1 (I2C_OAR1)

Address offset: 0x08
Reset value: 0x0000

22.6.4 I2C Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE Reserved

ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)

0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Should always be kept at 1 by software.

Bits 13:10 Reserved, must be kept at reset value

Bits 9:8 ADD[9:8]: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADD2[7:1] ENDUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

RM0041 Rev 6 591/709

RM0041 Inter-integrated circuit (I2C) interface

598

22.6.5 I2C Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

22.6.6 I2C Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.

– Transmitter mode: Byte transmission starts automatically when a byte is written in the DR
register. A continuous transmit stream can be maintained if the next data to be transmitted is
put in DR once the transmission is started (TxE=1)

– Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.

Write collision is not managed (DR can be written if TxE=0).

If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so
cannot be read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIME
OUT Res.

PEC
ERR

OVR AF ARLO BERR TxE RxNE
Res.

STOPF ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBALERT
1: SMBALERT event occurred on pin
In SMBus slave mode:
0: no SMBALERT response address header
1: SMBALERT response address header to SMBALERT LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Inter-integrated circuit (I2C) interface RM0041

592/709 RM0041 Rev 6

Bit 14 TIMEOUT: Timeout or Tlow error

0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by
hardware

– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.

Note: This functionality is available only in SMBus mode.

Bit 13 Reserved, must be kept at reset value

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)
1: PEC error: receiver returns NACK after PEC reception (whatever ACK)

Note: Cleared by software writing 0, or by hardware when PE=0.

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

– Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.

– Cleared by software writing 0, or by hardware when PE=0.

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected
Set by hardware when the interface loses the arbitration of the bus to another master

– Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (MSL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase,
or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects an SDA rising or falling edge while SCL is high,
occurring in a non-valid position during a byte transfer.

– Cleared by software writing 0, or by hardware when PE=0.

RM0041 Rev 6 593/709

RM0041 Inter-integrated circuit (I2C) interface

598

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty

– Set when DR is empty in transmission. TxE is not set during address phase.

– Cleared by software writing to the DR register or by hardware after a start or a stop condition
or when PE=0.

TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

– Set when data register is not empty in receiver mode. RxNE is not set during address phase.

– Cleared by software reading or writing the DR register or by hardware when PE=0.

RxNE is not set in case of ARLO event.

Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, must be kept at reset value

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected

– Set by hardware when a Stop condition is detected on the bus by the slave after an
acknowledge (if ACK=1).

– Cleared by software reading the SR1 register followed by a write in the CR1 register, or by
hardware when PE=0

Note: The STOPF bit is not set after a NACK reception.
It is recommended to perform the complete clearing sequence (READ SR1 then
WRITE CR1) after the STOPF is set. Refer to Figure 236.

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

– Set by hardware when the master has sent the first byte in 10-bit address mode.

– Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded

– Set by hardware when NOSTRETCH=0 and:

– In reception when a new byte is received (including ACK pulse) and DR has not been read
yet (RxNE=1).

– In transmission when a new byte should be sent and DR has not been written yet (TxE=1).

– Cleared by software reading SR1 followed by either a read or write in the DR register or by
hardware after a start or a stop condition in transmission or when PE=0.

Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

Inter-integrated circuit (I2C) interface RM0041

594/709 RM0041 Rev 6

22.6.7 I2C Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value: 0x0000

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.
Address matched (Slave)
0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus Alert
is recognized. (when enabled depending on configuration).

Note: In slave mode, it is recommended to perform the complete clearing sequence (READ
SR1 then READ SR2) after ADDR is set. Refer to Figure 236.

Address sent (Master)
0: No end of address transmission
1: End of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.

– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF
SMB

HOST
SMBDE
FAULT

GEN
CALL Res.

TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

RM0041 Rev 6 595/709

RM0041 Inter-integrated circuit (I2C) interface

598

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

22.6.8 I2C Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: fPCLK1 must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4
MHz to achieve Fm mode I²C frequencies. It must be a multiple of 10MHz to reach the
400 kHz maximum I²C Fm mode clock.

The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, must be kept at reset value

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted
This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.
It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

– Set by hardware on detection of SDA or SCL low

– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

Bit 0 MSL: Master/slave

0: Slave mode
1: Master mode

– Set by hardware as soon as the interface is in Master mode (SB=1).

– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY
Reserved

CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Inter-integrated circuit (I2C) interface RM0041

596/709 RM0041 Rev 6

22.6.9 I2C TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bit 15 F/S: I2C master mode selection

0: Sm mode I2C
1: Fm mode I2C

Bit 14 DUTY: Fm mode duty cycle

0: Fm mode tlow/thigh = 2
1: Fm mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, must be kept at reset value

Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode)

Controls the SCL clock in master mode.
Sm mode or SMBus:
Thigh = CCR * TPCLK1
Tlow = CCR * TPCLK1
Fm mode:
If DUTY = 0:
Thigh = CCR * TPCLK1
Tlow = 2 * CCR * TPCLK1
If DUTY = 1:
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1
For instance: in Sm mode, to generate a 100 kHz SCL frequency:
If FREQ = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum
allowed value is 0x01

thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters.

tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters.

I2C communication speed, fSCL ~ 1/(thigh + tlow). The real frequency may differ due to
the analog noise filter input delay.

The CCR register must be configured only when the I2C is disabled (PE = 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TRISE[5:0]

rw rw rw rw rw rw

RM0041 Rev 6 597/709

RM0041 Inter-integrated circuit (I2C) interface

598

Bits 15:6 Reserved, must be kept at reset value

Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode)

These bits should provide the maximum duration of the SCL feedback loop in master mode.
The purpose is to keep a stable SCL frequency whatever the SCL rising edge duration.
These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.
For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns.
If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.
(1000 ns / 125 ns = 8 + 1)
The filter value can also be added to TRISE[5:0].
If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

Inter-integrated circuit (I2C) interface RM0041

598/709 RM0041 Rev 6

22.6.10 I2C register map

The table below provides the I2C register map and reset values.

Refer to Section 3.3: Memory map for the register boundary addresses table.

Table 123. I2C register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

Reserved

S
W

R
S

T

R
e

se
rv

e
d

A
L

E
R

T

P
E

C

P
O

S

A
C

K

S
T

O
P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
e

se
rv

e
d

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

Reserved L
A

S
T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
e

se
rv

e
d

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

Reserved

A
D

D
M

O
D

E

Reserved
ADD[9:8] ADD[7:1]

A
D

D
0

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

Reserved
ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

Reserved
DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

Reserved

S
M

B
A

L
E

R
T

T
IM

E
O

U
T

R
e

se
rv

e
d

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E

R
e

se
rv

e
d

S
T

O
P

F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

Reserved
PEC[7:0]

D
U

A
L

F

S
M

B
H

O
S

T

S
M

B
D

E
F

A
U

L

G
E

N
C

A
L

L

R
e

se
rv

e
d

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

Reserved F
/S

D
U

T
Y

R
e

se
rv

ed CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

Reserved
TRISE[5:0]

Reset value 0 0 0 0 1 0

RM0041 Rev 6 599/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23 Universal synchronous asynchronous receiver
transmitter (USART)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

23.1 USART introduction

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a fractional baud rate generator.

It supports synchronous one-way communication and half-duplex single wire
communication. It also supports the LIN (local interconnection network), Smartcard Protocol
and IrDA (infrared data association) SIR ENDEC specifications, and modem operations
(CTS/RTS). It allows multiprocessor communication.

High speed data communication is possible by using the DMA for multibuffer configuration.

23.2 USART main features

• Full duplex, asynchronous communications

• NRZ standard format (Mark/Space)

• Configurable oversampling method by 16 or by 8 to give flexibility between speed and
clock tolerance

• Fractional baud rate generator systems

– Common programmable transmit and receive baud rate of up to 3 Mbit/s when the
APB frequency is 24 MHz and oversampling is by 8

• Programmable data word length (8 or 9 bits)

• Configurable stop bits - support for 1 or 2 stop bits

• LIN Master Synchronous Break send capability and LIN slave break detection
capability

– 13-bit break generation and 10/11 bit break detection when USART is hardware
configured for LIN

• Transmitter clock output for synchronous transmission

• IrDA SIR encoder decoder

– Support for 3/16 bit duration for normal mode

• Smartcard emulation capability

Universal synchronous asynchronous receiver transmitter (USART) RM0041

600/709 RM0041 Rev 6

– The Smartcard interface supports the asynchronous protocol Smartcards as
defined in the ISO 7816-3 standards

– 0.5, 1.5 stop bits for Smartcard operation

• Single-wire half-duplex communication

• Configurable multibuffer communication using DMA (direct memory access)

– Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

• Separate enable bits for transmitter and receiver

• Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of transmission flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• Four error detection flags:

– Overrun error

– Noise detection

– Frame error

– Parity error

• Ten interrupt sources with flags:

– CTS changes

– LIN break detection

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error

– Framing error

– Noise error

– Parity error

• Multiprocessor communication - enter into mute mode if address match does not occur

• Wake up from mute mode (by idle line detection or address mark detection)

• Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line

23.3 USART functional description

The interface is externally connected to another device by three pins (see Figure 243). Any
USART bidirectional communication requires a minimum of two pins: Receive Data In (RX)
and Transmit Data Out (TX):

RX: Receive Data Input is the serial data input. Oversampling techniques are used for data
recovery by discriminating between valid incoming data and noise.

TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O
port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX

RM0041 Rev 6 601/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and
receive the data (at USART level, data are then received on SW_RX).

Through these pins, serial data is transmitted and received in normal USART mode as
frames comprising:

• An Idle Line prior to transmission or reception

• A start bit

• A data word (8 or 9 bits) least significant bit first

• 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete

• This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit
fraction

• A status register (USART_SR)

• Data Register (USART_DR)

• A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction.

• A Guardtime Register (USART_GTPR) in case of Smartcard mode.

Refer to Section 23.6: USART registers on page 636 for the definitions of each bit.

The following pin is required to interface in synchronous mode:

• CK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission corresponding to SPI master mode (no clock pulses on start
bit and stop bit, and a software option to send a clock pulse on the last data bit). In
parallel data can be received synchronously on RX. This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable. In smartcard mode, CK can provide the clock to the
smartcard.

The following pins are required in Hardware flow control mode:

• CTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

• RTS: Request to send indicates that the USART is ready to receive a data (when low).

Universal synchronous asynchronous receiver transmitter (USART) RM0041

602/709 RM0041 Rev 6

Figure 243. USART block diagram

Wakeup
unit

Receiver
control

SR

Transmit
control

TXE TC RXNE IDLE ORE NF FE

USART

control
interrupt

CR1
M WAKE

Receive data register (RDR)

Receive Shift Register

Read

Transmit data register (TDR)

Transmit Shift Register

Write

SW_RX

TX

(Data register) DR

Transmitter
 clock

Receiver
clock

Receiver rate

Transmitter rate

fPCLKx(x=1,2)

 control

control

/ [8 x (2 - OVER8)]

Conventional baud rate generator

SBKRWURETEIDLERXNETCIETXEIE

CR1

UE PCE PS PEIE

PE

PWDATA

IRLPSCEN IRENDMARDMAT

USART Address

CR2

CR3

IrDA
SIR
ENDEC
block

LINE CKEN CPOL CPHA LBCL

SCLK control CK
CR2

GT

STOP[1:0]NACK

DIV_Mantissa

15 0

RE

USART_BRR

/USARTDIV

TE

HD

(CPU or DMA)(CPU or DMA)

PRDATA

Hardware
flow
controller

CTS LBD

RX

IRDA_OUT
IRDA_IN

RTS

CTS

GTPR
PSC

IE IE

DIV_Fraction

4

USARTDIV = DIV_Mantissa + (DIV_Fraction / 8 × (2 – OVER8))

SAMPLING

CR1
OVER8

DIVIDER

ai16099b

RM0041 Rev 6 603/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23.3.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 244).

The TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the
next frame which contains data (The number of “1” ‘s includes the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 244. Word length programming

MS19822V2

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
bit

Stop
bit

Next
Start
bit

Idle frame

9-bit word length (M bit is set), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame Next data frame

Clock

** LBCL bit controls last data clock pulse

**

Start
bit

Start
bit

Stop
bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
bit

Stop
bit

Next
Start
bit

Idle frame

8-bit word length (M bit is reset), 1 Stop bit

Possible
Parity

bit

Break frame

Data frame Next data frame

Clock

** LBCL bit controls last data clock pulse

**

Start
bit

Start
bit

Stop
bit

Universal synchronous asynchronous receiver transmitter (USART) RM0041

604/709 RM0041 Rev 6

23.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on
the TX pin and the corresponding clock pulses are output on the CK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the TX pin. In this
mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 243).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission corrupts the data on the TX pin as the baud rate counters get frozen. The
current data being transmitted are lost.

An idle frame is sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 Stop bits: This is supported by normal USART, single-wire and modem modes.

• 0.5 stop bit: To be used when receiving data in Smartcard mode.

• 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode.

An idle frame transmission includes the stop bits.

A break transmission is 10 low bits followed by the configured number of stop bits (when m
= 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It is not
possible to transmit long breaks (break of length greater than 10/11 low bits).

RM0041 Rev 6 605/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Figure 245. Configurable stop bits

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

5. Select the desired baud rate using the USART_BRR register.

6. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

8. After writing the last data into the USART_DR register, wait until TC=1. This indicates
that the transmission of the last frame is complete. This is required for instance when
the USART is disabled or enters the Halt mode to avoid corrupting the last
transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from TDR to the shift register and the data transmission has
started.

• The TDR register is empty.

• The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

MSv42088V1

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit Stop

bit

Next
start

8-bit Word length (M bit is reset)
Possible

parity
bitData frame

Next data frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit 2 Stop Bits

Next
Start
Bit

Possible
parity

bitData frame
Next data frame

Next data frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
start
bit

Possible
Parity

BitData frame
Next data frame

1 1/2 stop bits

a) 1 Stop Bit

b) 1 1/2 stop Bits

c) 2 Stop Bits

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

1/2 Stop Bit

Next
Start
Bit

Possible
parity

bitData frame

d) 1/2 Stop Bit

Universal synchronous asynchronous receiver transmitter (USART) RM0041

606/709 RM0041 Rev 6

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register and which is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USART_CR1 register.

After writing the last data into the USART_DR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low-power mode
(see Figure 246: TC/TXE behavior when transmitting).

The TC bit is cleared by the following software sequence:

1. A read from the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended
only for Multibuffer communication.

Figure 246. TC/TXE behavior when transmitting

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 244).

If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current
character transmission. This bit is reset by hardware when the break character is completed
(during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the
last break frame to guarantee the recognition of the start bit of the next frame.

Note: If the software resets the SBK bit before the commencement of break transmission, the
break character is not transmitted. For two consecutive breaks, the SBK bit should be set
after the stop bit of the previous break.

Software wait until TC=1

Software
enables the

USART
Software waits until TXE=1

and writes F2 into DR

Idle preamble Frame 1 Frame 2 Frame 3

Set by hardware
set by hardware
cleared by software

set by hardware
cleared by software

Software waits until TXE=1
and writes F1 into DR

Software waits until TXE=1
and writes F1 into DR

TC is not set
because TXE=0

TC is not set
because TXE=1

USART_DR

TC flag

TXE flag

TX line

set
by hardware

TC is not set
because TXE=0

F1 F2 F3

MS48961V1

RM0041 Rev 6 607/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

23.3.3 Receiver

The USART can receive data words of either 8 or 9 bits depending on the M bit in the
USART_CR1 register.

Start bit detection

The start bit detection sequence is the same when oversampling by 16 or by 8.

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0.

Figure 247. Start bit detection when oversampling by 16 or 8

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set) where it waits for a falling edge.

The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).

The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise
flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the

01
0

X
0

X
0 0 0 0

X
X
X

X
X X

Falling edge
detection

11

1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16

X X
X X X X X

X
9
1 0 1 1 1 2 1 3 1 4 1 5 1 6

6/16

7/167/16

X

At least 2 bits
out of 3 at 0

At least 2 bits
out of 3 at 0

One-bit time

Conditions
to validate
the start bit

Real
sample
clock

Ideal
sample
clock

RX line

RX state Idle Start bit

Sampled values

ai15471b

Universal synchronous asynchronous receiver transmitter (USART) RM0041

608/709 RM0041 Rev 6

3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met,
the start detection aborts and the receiver returns to the idle state (no flag is set).

If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th
and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise
flag bit is set.

Character reception

During an USART reception, data shifts in least significant bit first through the RX pin. In this
mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the
received shift register.

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication. STEP 3

5. Select the desired baud rate using the baud rate register USART_BRR

6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a
start bit.

When a character is received

• The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXNEIE bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

• In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to
the Data Register.

• In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The
RXNE bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Note: The RE bit should not be reset while receiving data. If the RE bit is disabled during
reception, the reception of the current byte is aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the IDLEIE bit is set.

RM0041 Rev 6 609/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content is not lost. The previous data is available when a read to USART_DR
is performed.

• The shift register is overwritten. After that point, any data received during overrun is
lost.

• An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits
are set.

• The ORE bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

• if RXNE=1, then the last valid data is stored in the receive register RDR and can be
read,

• if RXNE=0, then it means that the last valid data has already been read and thus there
is nothing to be read in the RDR. This case can occur when the last valid data is read in
the RDR at the same time as the new (and lost) data is received. It may also occur
when the new data is received during the reading sequence (between the USART_SR
register read access and the USART_DR read access).

Selecting the proper oversampling method

The receiver implements different user-configurable oversampling techniques (except in
synchronous mode) for data recovery by discriminating between valid incoming data and
noise.

The oversampling method can be selected by programming the OVER8 bit in the
USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 248 and
Figure 249).

Depending on the application:

• select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 23.3.5: USART receiver tolerance to clock deviation on page 617)

• select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock
deviations. In this case, the maximum speed is limited to maximum fPCLK/16

Universal synchronous asynchronous receiver transmitter (USART) RM0041

610/709 RM0041 Rev 6

Programming the ONEBIT bit in the USART_CR3 register selects the method used to
evaluate the logic level. There are two options:

• the majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set

• a single sample in the center of the received bit

Depending on the application:

– select the three samples’ majority vote method (ONEBIT=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to
Figure 124) because this indicates that a glitch occurred during the sampling.

– select the single sample method (ONEBIT=1) when the line is noise-free to
increase the receiver’s tolerance to clock deviations (see Section 23.3.5: USART
receiver tolerance to clock deviation on page 617). In this case the NF bit is never
set.

When noise is detected in a frame:

• The NF bit is set at the rising edge of the RXNE bit.

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt is issued if the EIE bit is set in the USART_CR3
register.

The NF bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes,
the OVER8 bit is forced to ‘0 by hardware.

Figure 248. Data sampling when oversampling by 16

MSv31152V1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

6/16

7/167/16

One bit time

Sample clock

RX line

RM0041 Rev 6 611/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Figure 249. Data sampling when oversampling by 8

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt isissued if the EIE bit is set in the USART_CR3
register.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Table 124. Noise detection from sampled data

Sampled value NE status Received bit value

000 0 0

001 1 0

010 1 0

011 1 1

100 1 0

101 1 1

110 1 1

111 0 1

MSv31153V1

1 2 3 4 5 6 7

sampled values

2/8

3/83/8

One bit time

Sample
clock (x8)

RX line

8

Universal synchronous asynchronous receiver transmitter (USART) RM0041

612/709 RM0041 Rev 6

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bit can be decomposed into 2 parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 23.3.11: Smartcard on
page 626 for more details.

4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
is set. The second stop bit is not checked for framing error. The RXNE flag is set at the
end of the first stop bit.

23.3.4 Fractional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the Mantissa and Fraction values of USARTDIV.

Equation 1: Baud rate for standard USART (SPI mode included)

Equation 2: Baud rate in Smartcard, LIN and IrDA modes

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

• When OVER8=0, the fractional part is coded on 4 bits and programmed by the
DIV_fraction[3:0] bits in the USART_BRR register

• When OVER8=1, the fractional part is coded on 3 bits and programmed by the
DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept
cleared.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

Tx/Rx baud
fCK

8 2 OVER8–() USARTDIV××
---=

Tx/Rx baud
fCK

16 USARTDIV×
--=

RM0041 Rev 6 613/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

How to derive USARTDIV from USART_BRR register values when OVER8=0

Example 1:

If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 12/16 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 16*0d0.62 = 0d9.92

The nearest real number is 0d10 = 0xA

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 16*0d0.99 = 0d15.84

The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000

How to derive USARTDIV from USART_BRR register values when OVER8=1

Example 1:

If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 6/8 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 8*0d0.62 = 0d4.96

The nearest real number is 0d5 = 0x5

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Universal synchronous asynchronous receiver transmitter (USART) RM0041

614/709 RM0041 Rev 6

Then, USART_BRR = 0x195 => USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 8*0d0.99 = 0d7.92

The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000

Table 125. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8=0)

Baud rate7 fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0

2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0

3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0

4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0

5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16

6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16

7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16

8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16

9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16

10 921.6 KBps NA NA NA NA NA NA

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

RM0041 Rev 6 615/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Table 126. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)
B.rate /
Desired
B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0

2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0

3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0

4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0

5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16

6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16

7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16

8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16

9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16

10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 127. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08

Universal synchronous asynchronous receiver transmitter (USART) RM0041

616/709 RM0041 Rev 6

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16

9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16

10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 127. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 16(1) (continued)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

Table 128. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0

4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0

5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16

8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16

9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16

10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16

11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0

12 3 MBps NA NA NA 3000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

RM0041 Rev 6 617/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23.3.5 USART receiver tolerance to clock deviation

The USART asynchronous receiver works correctly only if the total clock system deviation is
smaller than the USART receiver’s tolerance. The causes which contribute to the total
deviation are:

• DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver’s local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

DTRA + DQUANT + DREC + DTCL < USART receiver’s tolerance

The USART receiver’s tolerance to properly receive data is equal to the maximum tolerated
deviation and depends on the following choices:

• 10- or 11-bit character length defined by the M bit in the USART_CR1 register

• oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register

• use of fractional baud rate or not

• use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in
the USART_CR3 register

Note: The figures specified in Table 129 and Table 130 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times
when M=1).

23.3.6 Multiprocessor communication

There is a possibility of performing multiprocessor communication with the USART (several
USARTs connected in a network). For instance one of the USARTs can be the master, its TX
output is connected to the RX input of the other USART. The others are slaves, their

Table 129. USART receiver’s tolerance when DIV fraction is 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.75% 4.375% 2.50% 3.75%

1 3.41% 3.97% 2.27% 3.41%

Table 130. USART receiver tolerance when DIV_Fraction is different from 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.33% 3.88% 2% 3%

1 3.03% 3.53% 1.82% 2.73%

Universal synchronous asynchronous receiver transmitter (USART) RM0041

618/709 RM0041 Rev 6

respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

• Idle Line detection if the WAKE bit is reset,

• Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using Idle line detection is given in Figure 250.

Figure 250. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the USART_CR2 register.

The USART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt nor DMA request is issued as the
USART would have entered mute mode.

MSv40881V1

Data 1 Data 2 IDLEData 3 Data 4 Data 6

Idle frame detectedRWU written to 1

RWU

RX

Mute mode Normal mode

RXNE RXNE

Data 5

RM0041 Rev 6 619/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0
in the USART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 251.

Figure 251. Mute mode using address mark detection

23.3.7 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 131.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7
or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit in
USART_CR1 = 0).

MSv40882V1

IDLE Addr=0 Data 1 Data 2 IDLE Addr=1 Data 3 Data 4 Addr=2 Data 5

In this example, the current address of the receiver is 1
(programmed in the USART_CR2 register)

RXNE

Non-matching addressMatching address

Non-matching address

RWU written to 1
(RXNE was cleared)

RWU

RX

Mute mode Mute modeNormal mode

RXNE RXNE

Table 131. Frame formats

M bit PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

Universal synchronous asynchronous receiver transmitter (USART) RM0041

620/709 RM0041 Rev 6

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software
sequence (a read from the status register followed by a read or write access to the
USART_DR data register).

Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to
identify an address but not the parity bit. And the receiver does not check the parity of the
address data (PE is not set in case of a parity error).

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Note: The software routine that manages the transmission can activate the software sequence
which clears the PE flag (a read from the status register followed by a read or write access
to the data register). When operating in half-duplex mode, depending on the software, this
can cause the PE flag to be unexpectedly cleared.

23.3.8 LIN (local interconnection network) mode

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN
mode, the following bits must be kept cleared:

• STOP[1:0] and CLKEN in the USART_CR2 register

• SCEN, HDSEL and IREN in the USART_CR3 register.

LIN transmission

The same procedure explained in Section 23.3.2 has to be applied for LIN Master
transmission than for normal USART transmission with the following differences:

• Clear the M bit to configure 8-bit word length.

• Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits
as a break character. Then a bit of value ‘1 is sent to allow the next start detection.

LIN reception

A break detection circuit is implemented on the USART interface. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0,

RM0041 Rev 6 621/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (stop bit detected
at ‘0, which is the case for any break frame), the receiver stops until the break detection
circuit receives either a ‘1, if the break word was not complete, or a delimiter character if a
break has been detected.

The behavior of the break detector state machine and the break flag is shown on the
Figure 252: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 622.

Examples of break frames are given on Figure 253: Break detection in LIN mode vs.
Framing error detection on page 623.

Universal synchronous asynchronous receiver transmitter (USART) RM0041

622/709 RM0041 Rev 6

Figure 252. Break detection in LIN mode (11-bit break length - LBDL bit is set)

MSv40883V1

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bit10 Idle

0 0 0 0 0 0 0 0 0 0 1

Case 1: break signal not long enough => break discarded, LBD is not set

RX line

Capture strobe

Break state
machine

Read samples

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 B10 Idle

0 0 0 0 0 0 0 0 0 0 0

Case 2: break signal just long enough => break detected, LBD is set

RX line

Capture strobe

Break state
machine

Read samples

Break frame

Break frame

Delimiter is immediate

LBD

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bit10 Idle

0 0 0 0 0 0 0 0 0 0 0

Case 3: break signal long enough => break detected, LBD is set

RX line

Capture strobe

Break state
machine

Read samples

Break frame

LBD

wait delimiter

RM0041 Rev 6 623/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Figure 253. Break detection in LIN mode vs. Framing error detection

23.3.9 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• SCEN, HDSEL and IREN bits in the USART_CR3 register.

The USART allows the user to control a bidirectional synchronous serial communications in
master mode. The CK pin is the output of the USART transmitter clock. No clock pulses are
sent to the CK pin during start bit and stop bit. Depending on the state of the LBCL bit in the
USART_CR2 register clock pulses are generated or not during the last valid data bit
(address mark). The CPOL bit in the USART_CR2 register allows the user to select the
clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the
phase of the external clock (see Figure 254, Figure 255 & Figure 256).

During the Idle state, preamble and send break, the external CK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as CK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on CK (rising or falling edge, depending
on CPOL and CPHA), without any oversampling. A setup and a hold time must be
respected (which depends on the baud rate: 1/16 bit time).

Note: The CK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR

MSv31157V1

data 1 IDLE BREAK data 2 (0x55) data 3 (header)

1 data time 1 data time

RX line

RXNE /FE

LBDF

Case 1: break occurring after an Idle

data 1 data2 BREAK data 2 (0x55) data 3 (header)

1 data time 1 data time

RX line

RXNE /FE

LBDF

Case 2: break occurring while data is being received

Universal synchronous asynchronous receiver transmitter (USART) RM0041

624/709 RM0041 Rev 6

has been written). This means that it is not possible to receive a synchronous data without
transmitting data.

The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These
bits should not be changed while the transmitter or the receiver is enabled.

It is advised that TE and RE are set in the same instruction in order to minimize the setup
and the hold time of the receiver.

The USART supports master mode only: it cannot receive or send data related to an input
clock (CK is always an output).

Figure 254. USART example of synchronous transmission

Figure 255. USART data clock timing diagram (M=0)

MSv31158V2

USART Synchronous device
(slave SPI)

RX
TX

Data out
Data in

ClockCK

MSv31159V1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

*

*

*

*

MSB

MSBLSB

LSBStart

Start Stop
Idle or preceding
transmission

Idle or next
transmission

*

*LBCL bit controls last data pulse
Capture strobe

Data on RX
(from slave)

Data on TX
(from master)

Clock (CPOL=1, CPHA=1

Clock (CPOL=1, CPHA=0

Clock (CPOL=0, CPHA=1

Clock (CPOL=0, CPHA=0

Stop

M=0 (8 data bits)

RM0041 Rev 6 625/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Figure 256. USART data clock timing diagram (M=1)

Figure 257. RX data setup/hold time

Note: The function of CK is different in Smartcard mode. Refer to the Smartcard mode chapter for
more details.

23.3.10 Single-wire half-duplex communication

The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

• LINEN and CLKEN bits in the USART_CR2 register,

• SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a single-wire half-duplex protocol where the TX and
RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3).

MSv31160V1

0 1 2 3 4 5 6 8

0 1 2 3 4 5 6 8

*

*

*

*

MSB

MSBLSB

LSBStart

Start Stop
Idle or
preceding
transmission

Idle or next
transmission

*

*LBCL bit controls last data pulse

Capture
strobe

Data on RX
(from slave)

Data on TX
(from master)

Clock (CPOL=1,
CPHA=1

Clock (CPOL=1,
CPHA=0

Clock (CPOL=0,
CPHA=1

Clock (CPOL=0,
CPHA=0

Stop

M=1 (9 data bits)

7

7

MSv31161V2

Data on RX (from slave)

CK
(capture strobe on CK rising

edge in this example)

Valid DATA bit

tSETUP tHOLD

tSETUP=tHOLD 1/16 bit time

Universal synchronous asynchronous receiver transmitter (USART) RM0041

626/709 RM0041 Rev 6

As soon as HDSEL is written to 1:

• the TX and RX lines are internally connected

• the RX pin is no longer used

• the TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as floating input (or output high open-drain) when not driven by the USART.

Apart from this, the communications are similar to what is done in normal USART mode.
The conflicts on the line must be managed by the software (by the use of a centralized
arbiter, for instance). In particular, the transmission is never blocked by hardware and
continue to occur as soon as a data is written in the data register while the TE bit is set.

23.3.11 Smartcard

The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
smartcard mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO 7816-3 standard. The USART should be configured as:

• 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register

• 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2
register.

Note: It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop
bits for both transmitting and receiving to avoid switching between the two configurations.

Figure 258 shows examples of what can be seen on the data line with and without parity
error.

Figure 258. ISO 7816-3 asynchronous protocol

When connected to a Smartcard, the TX output of the USART drives a bidirectional line that
is also driven by the Smartcard. The TX pin must be configured as open-drain.

Smartcard is a single wire half duplex communication protocol.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register starts

MSv31162V1

Without Parity error

p76543210S

Guard time

WithParity error

p76543210S

Guard time

Start bit

Start bit Line pulled low by receiver
during stop in case of parity error

RM0041 Rev 6 627/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5
stop bit period, the transmit line is pulled low for a baud clock period after the
completion of the receive frame. This is to indicate to the Smartcard that the data
transmitted to USART has not been correctly received. This NACK signal (pulling
transmit line low for 1 baud clock) causes a framing error on the transmitter side
(configured with 1.5 stop bits). The application can handle re-sending of data according
to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set,
otherwise a NACK is not transmitted.

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK is not detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
does not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error is
treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 259 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 259. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the CK output. In smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the

MSv31163V1

Bit 7 Parity bit 1.5 Stop bit

1 bit time 1.5 bit time

0.5 bit time

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Universal synchronous asynchronous receiver transmitter (USART) RM0041

628/709 RM0041 Rev 6

prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62,
where fCK is the peripheral input clock.

23.3.12 IrDA SIR ENDEC block

The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA
mode, the following bits must be kept cleared:

• LINEN, STOP and CLKEN bits in the USART_CR2 register,

• SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 260).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal
mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to USART. The decoder input is
normally HIGH (marking state) in the Idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

• IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART
is sending data to the IrDA encoder), any data on the IrDA receive line is ignored by the
IrDA decoder and if the Receiver is busy (USART is receiving decoded data from the
USART), data on the TX from the USART to IrDA is not encoded by IrDA. While
receiving data, transmission should be avoided as the data to be transmitted could be
corrupted.

• A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 261).

• The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

• The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

• The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.

• The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width
less than 1 PSC period are always rejected, but those of width greater than one and
less than two periods may be accepted or rejected, those greater than 2 periods are
accepted as a pulse. The IrDA encoder/decoder does not work when PSC = 0.

• The receiver can communicate with a low-power transmitter.

• In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

RM0041 Rev 6 629/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

IrDA low-power mode

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
USART_GTPR).

Note: A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 260. IrDA SIR ENDEC- block diagram

Figure 261. IrDA data modulation (3/16) -Normal mode

SIREN

MSv31164V2

USART

OR

SIR
Transmit
Encoder

SIR
Receive
DEcoder

TX

RX

USART_RX

IrDA_IN

IrDA_OUT

USART_TX

MSv31165V1

TX

Start
bit
0 1 0 1 0 0 1 1 0 1

Stop
bit

Bit period
IrDA_OUT

IrDA_IN

RX

3/16

0 1 0 1 0 0 1 1 0 1

Universal synchronous asynchronous receiver transmitter (USART) RM0041

630/709 RM0041 Rev 6

23.3.13 Continuous communication using DMA

The USART is capable of continuous communication using the DMA. The DMA requests for
Rx buffer and Tx buffer are generated independently.

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the
DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA
channel for USART transmission, use the following procedure (x denotes the channel
number):

1. Write the USART_DR register address in the DMA control register to configure it as the
destination of the transfer. The data are moved to this address from memory after each
TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data are loaded into the USART_DR register from this memory area
after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC bit in the SR register by writing 0 to it.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC
flag remains cleared during all data transfers and it is set by hardware at the last frame’s
end of transmission.

RM0041 Rev 6 631/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Figure 262. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_DR register to a SRAM area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for USART reception, use the following procedure:

1. Write the USART_DR register address in the DMA control register to configure it as the
source of the transfer. The data are moved from this address to the memory after each
RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data rae loaded from USART_DR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred in the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

TX line

USART_DR

Frame 1

TXE flag

F2

TC flag

F3

Frame 2

software waits until TC=1

Frame 3

set by hardware
cleared by DMA read

set by hardware
cleared by DMA read set by hardware

set

Idle preamble

by hardware

F1

software configures
the DMA to send 3

data and enables the
USART

DMA request ignored by the DMA

DMA writes

flag DMA TCIF set by hardware
clear
by software

 USART_DR

because DMA transfer is complete

DMA writes F1
into

USART_DR

DMA writes F2
into

USART_DR

DMA writes F3
into

USART_DR.

The DMA transfer
is complete
(TCIF=1 in
DMA_ISR)

(Transfer complete)

ai17192b

Universal synchronous asynchronous receiver transmitter (USART) RM0041

632/709 RM0041 Rev 6

Figure 263. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In case of multibuffer communication if any error occurs during the transaction the error flag
is asserted after the current byte. An interrupt is generated if the interrupt enable flag is set.
For framing error, overrun error and noise flag which are asserted with RXNE in case of
single byte reception, there is a separate error flag interrupt enable bit (EIE bit in the
USART_CR3 register), which if set, issues an interrupt after the current byte with either of
these errors.

23.3.14 Hardware flow control

It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 264 shows how to connect 2 devices in this mode:

Figure 264. Hardware flow control between 2 USARTs

RTS and CTS flow control can be enabled independently by writing respectively RTSE and
CTSE bits to 1 (in the USART_CR3 register).

TX line

USART_DR

Frame 1

RXNE flag

F2 F3

Frame 2 Frame 3

set by hardware
cleared by DMA read

F1

software configures the
DMA to receive 3 data
blocks and enables
the USART

DMA request

DMA reads USART_DR

DMA TCIF flag set by hardware
cleared
by software

DMA reads F1
from

USART_DR

(Transfer complete)

DMA reads F2
from

USART_DR

DMA reads F3
from

USART_DR

The DMA transfer
is complete
(TCIF=1 in
DMA_ISR)

ai17193b

MSv31169V2

TX circuit

USART 1

TX

RX circuit

RX circuit

USART 2

TX circuit
TX

CTS

CTSRTS

RX

RTS

RX

RM0041 Rev 6 633/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

RTS flow control

If the RTS flow control is enabled (RTSE=1), then RTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register is full, RTS is
deasserted, indicating that the transmission is expected to stop at the end of the current
frame. Figure 265 shows an example of communication with RTS flow control enabled.

Figure 265. RTS flow control

CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is asserted (tied low), then the next data is
transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When CTS is deasserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure
below shows an example of communication with CTS flow control enabled.

MSv68794V1

Start
bit

Start
bit

Stop
bit Idle Stop

bitRX

RTS

Data 1 read
Data 2 can now be transmitted

RXNE RXNE

Data 1 Data 2

Universal synchronous asynchronous receiver transmitter (USART) RM0041

634/709 RM0041 Rev 6

Figure 266. CTS flow control

Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not
check the CTS input state to send a break.

MSv68793V1

Start
bit

Stop
bit

TX

TDR

CTS

Data 1

Data 2

Stop
bit Idle Start

bitData 2 Data 3

Data 3empty empty

CTS

CTS

Transmit data register

Writing data 3 in TDR Transmission of Data 3 is
delayed until CTS = 0

RM0041 Rev 6 635/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23.4 USART interrupts

The USART interrupt events are connected to the same interrupt vector (see Figure 267).

• During transmission: Transmission Complete, Clear to Send or Transmit Data Register
empty interrupt.

• While receiving: Idle Line detection, Overrun error, Receive Data register not empty,
Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and
Framing Error (only in multi buffer communication).

These events generate an interrupt if the corresponding Enable Control Bit is set.

Figure 267. USART interrupt mapping diagram

Table 132. USART interrupt requests

Interrupt event Event flag
Enable control

bit

Transmit Data Register Empty TXE TXEIE

CTS flag CTS CTSIE

Transmission Complete TC TCIE

Received Data Ready to be Read RXNE
RXNEIE

Overrun Error Detected ORE

Idle Line Detected IDLE IDLEIE

Parity Error PE PEIE

Break Flag LBD LBDIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication

NF or ORE or FE EIE

MSv42089V1

TC
TCIE
TXE

TXEIE
CTSIF
CTSIE

IDLE
IDLEIE

RXNEIE
ORE

RXNEIE
RXNE

PE
PEIE
LBD

LBDIE

FE
NE

ORE EIE

USART
interrupt

DMAR

Universal synchronous asynchronous receiver transmitter (USART) RM0041

636/709 RM0041 Rev 6

23.5 USART mode configuration

23.6 USART registers

Refer to Section 1.1: List of abbreviations for registers for registers for a list of abbreviations
used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

23.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0 0000

Table 133. USART mode configuration(1)

1. X = supported; NA = not applicable.

USART modes USART1 USART2 USART3 UART4 UART5 USART6

Asynchronous mode X X X X X X

Hardware Flow Control X X X NA NA X

Multibuffer communication (DMA) X X X X X X

Multiprocessor communication X X X X X X

Synchronous X X X NA NA X

Smartcard X X X NA NA X

Half-Duplex (Single-Wire mode) X X X X X X

IrDA X X X X X X

LIN X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CTS LBD TXE TC RXNE IDLE ORE NF FE PE

rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r

Bits 31:10 Reserved, must be kept at reset value

Bit 9 CTS: CTS flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3
register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Bit 8 LBD: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software (by
writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: An interrupt is generated when LBD=1 if LBDIE=1

RM0041 Rev 6 637/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into
the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It
is cleared by a write to the USART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by
a software sequence (a read from the USART_SR register followed by a write to the
USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing
sequence is recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1
register. It is cleared by a read to the USART_DR register. The RXNE flag can also be
cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the
IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit is not set again until the RXNE bit has been set itself (a new idle line
occurs).

Bit 3 ORE: Overrun error

This bit is set by hardware when the word currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content is not lost but the shift register is
overwritten. An interrupt is generated on ORE flag in case of Multi Buffer
communication if the EIE bit is set.

Universal synchronous asynchronous receiver transmitter (USART) RM0041

638/709 RM0041 Rev 6

Bit 2 NF: Noise detected flag

This bit is set by hardware when noise is detected on a received frame. It is cleared by a
software sequence (an read to the USART_SR register followed by a read to the
USART_DR register).
0: No noise is detected
1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupting interrupt is generated on NF flag in case of Multi
Buffer communication if the EIE bit is set.

Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT
bit to 1 to increase the USART tolerance to deviations (Refer to Section 23.3.5: USART
receiver tolerance to clock deviation on page 617).

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by a software sequence (an read to the USART_SR register
followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. If the word currently being transferred causes both
frame error and overrun error, it is transferred and only the ORE bit is set.

An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit
is set.

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a
software sequence (a read from the status register followed by a read or write access to the
USART_DR data register). The software must wait for the RXNE flag to be set before
clearing the PE bit.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

RM0041 Rev 6 639/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: 0xXXXX XXXX

23.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000 0000

23.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000 0000

Bits 31:9 Reserved, must be kept at reset value

Bits 8:0 DR[8:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from
or written to.
The Data register performs a double function (read and write) since it is composed of two
registers, one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output shift
register (see Figure 1).
The RDR register provides the parallel interface between the input shift register and the
internal bus.
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the
value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because
it is replaced by the parity.
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa[11:0] DIV_Fraction[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)

Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV

These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the
DIV_Fraction3 bit is not considered and must be kept cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 Reserved UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK

rw Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Universal synchronous asynchronous receiver transmitter (USART) RM0041

640/709 RM0041 Rev 6

Bits 31:16 Reserved, must be kept at reset value

Bit 15 OVER8: Oversampling mode

0: oversampling by 16
1: oversampling by 8

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when
SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware.

Bit 14 Reserved, must be kept at reset value

Bit 13 UE: USART enable

When this bit is cleared, the USART prescalers and outputs are stopped and the end of the
current byte transfer in order to reduce power consumption. This bit is set and cleared by
software.
0: USART prescaler and outputs disabled
1: USART enabled

Bit 12 M: Word length

This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, n Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 11 WAKE: Wakeup method

This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

Bit 10 PCE: Parity control enable

This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled

Bit 9 PS: Parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity is selected after the current byte.
0: Even parity
1: Odd parity

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever PE=1 in the USART_SR register

Bit 7 TXEIE: TXE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

RM0041 Rev 6 641/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR
register

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in smartcard mode.

When TE is set, there is a 1 bit-time delay before the transmission starts.

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup

This bit determines if the USART is in mute mode or not. It is set and cleared by software
and can be cleared by hardware when a wakeup sequence is recognized.
0: Receiver in active mode
1: Receiver in mute mode

Note: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a
data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.

In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be
modified by software while the RXNE bit is set.

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software. It should
be set by software, and is reset by hardware during the stop bit of break.
0: No break character is transmitted.
1: Break character is transmitted.

Universal synchronous asynchronous receiver transmitter (USART) RM0041

642/709 RM0041 Rev 6

23.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LINEN STOP[1:0] CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. ADD[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 LINEN: LIN mode enable

This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in
the USART_CR1 register, and to detect LIN Sync breaks.

Bits 13:12 STOP: STOP bits

These bits are used for programming the stop bits.
00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the CK pin.
0: CK pin disabled
1: CK pin enabled
This bit is not available for UART4 & UART5.

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on CK pin outside transmission window.
1: Steady high value on CK pin outside transmission window.
This bit is not available for UART4 & UART5.

Bit 9 CPHA: Clock phase

This bit allows the user to select the phase of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see figures
255 to 256)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit is not available for UART4 & UART5.

RM0041 Rev 6 643/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

23.6.6 Control register 3 (USART_CR3)

Address offset: 0x14

Reset value: 0x0000 0000

Bit 8 LBCL: Last bit clock pulse

This bit allows the user to select whether the clock pulse associated with the last data bit
transmitted (MSB) has to be output on the CK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the CK pin
1: The clock pulse of the last data bit is output to the CK pin

Note: 1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected
by the M bit in the USART_CR1 register.

2: This bit is not available for UART4 & UART5.

Bit 7 Reserved, must be kept at reset value

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBD=1 in the USART_SR register

Bit 5 LBDL: lin break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection

Bit 4 Reserved, must be kept at reset value

Bits 3:0 ADD[3:0]: Address of the USART node

This bit-field gives the address of the USART node.
This is used in multiprocessor communication during mute mode, for wake up with address mark
detection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ONEBIT CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bit 11 ONEBIT: One sample bit method enable

This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method

Note: The ONEBIT feature applies only to data bits. It does not apply to START bit.

Bit 7 DMAT: DMA enable transmitter

This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission

Universal synchronous asynchronous receiver transmitter (USART) RM0041

644/709 RM0041 Rev 6

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard mode disabled
1: Smartcard mode enabled

Bit 4 NACK: Smartcard NACK enable

0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected

Bit 2 IRLP: IrDA low-power

This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in
case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register).
0: Interrupt is inhibited
1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or
ORE=1 or NF=1 in the USART_SR register.

RM0041 Rev 6 645/709

RM0041 Universal synchronous asynchronous receiver transmitter (USART)

646

23.6.7 Guard time and prescaler register (USART_GTPR)

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 7:0 PSC[7:0]: Prescaler value

– In IrDA Low-power mode:

PSC[7:0] = IrDA Low-Power Baud Rate
Used for programming the prescaler for dividing the system clock to achieve the low-power
frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...

– In normal IrDA mode: PSC must be set to 00000001.

– In smartcard mode:

PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the system clock to provide the smartcard
clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...

Note: 1: Bits [7:5] have no effect if Smartcard mode is used.
2: This bit is not available for UART4 & UART5.

Universal synchronous asynchronous receiver transmitter (USART) RM0041

646/709 RM0041 Rev 6

23.6.8 USART register map

The table below gives the USART register map and reset values.

Refer to Section 2.3: Memory map for the register boundary addresses.

Table 134. USART register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
USART_SR

Reserved C
T

S

L
B

D

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 1 1 0 0 0 0 0 0

0x04
USART_DR

Reserved
DR[8:0]

Reset value 0 0 0 0 0 0 0 0 0

0x08
USART_BRR

Reserved
DIV_Mantissa[15:4]

DIV_Fraction
[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USART_CR1

Reserved

O
V

E
R

8

R
e

se
rv

e
d

U
E M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
L

E
IE

T
E

R
E

R
W

U

S
B

K

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_CR2

Reserved LI
N

E
N STOP

[1:0]

C
L

K
E

N

C
P

O
L

C
P

H
A

L
B

C
L

R
e

se
rv

ed

LB
D

IE

L
B

D
L

R
e

se
rv

ed ADD[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_CR3

Reserved

O
N

E
B

IT

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

A
T

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
LP

IR
E

N

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USART_GTPR

Reserved
GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0041 Rev 6 647/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24 High-definition multimedia interface-consumer
electronics control controller (HDMI™-CEC)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xC, STM32F100xD and STM32F100xE
microcontrollers where the flash memory density ranges between 256 and 512 Kbytes.

This section applies to all STM32F100xx devices, unless otherwise specified.

24.1 Introduction

Consumer electronics control (CEC) is the appendix supplement 1 to the HDMI (high-
definition multimedia interface) standard.

It is a protocol that provides high-level control functions between all of the various
audiovisual products in an environment. It is specified to operate at low speeds with
minimum processing and memory overhead.

The HDMI-CEC controller provides a hardware support of this protocol.

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

648/709 RM0041 Rev 6

24.2 HDMI-CEC main features

• Supports HDMI-CEC v1.3a

• Supports the whole set of features offered with CEC (devices may use all or only some
of these features, depending on functionality):

– One touch play - a device may be played and become the active source by
pressing a single button.

– System standby - enables devices to be set on standby by pressing a single
button.

– Preset transfer - the presets of a device can be auto-configured to match those of
the TV.

– One touch record - Used to make recordings by pressing a single button.

– Timer programming - any device can program a timer recording on a recording
device.

– System information - allows devices to auto-configure their language and country
settings.

– Deck control - allows a device to control and interrogate a playback device.

– Tuner control - allows a device to control the tuner of another device.

– Vendor specific commands - allows vendor-defined commands to be used.

– OSD display - allows a device to display text using the on-screen display of the
TV.

– Device menu control - allows a device to control the menu of another device.

– Routing control - Enables control of CEC switches for the streaming of a new
source device.

– Remote control pass through - allows remote control commands to be passed
along to other devices.

– Device OSD name transfer - devices may request the preferred OSD name of
other devices within the system.

Note: If you need the power-off state, you have to use an external component/transceiver. For
more details refer to AN3127: “CEC networking using STM32F100xx value line
microcontrollers”.

24.3 HDMI-CEC bus topology

24.3.1 HDMI-CEC pin

The CEC bus consists of a single bidirectional line that is used to transfer data in and out of
the device. It is connected to a +3.3 V supply voltage via a 27 kΩ pull-up resistor. The output
stage of the device must have an open-drain or open-collector to allow a wired-AND
connection.

The HDMI-CEC controller manages the CEC bidirectional line as an alternate function of a
standard GPIO, assuming that it is configured as alternate function open drain. The 27 kΩ
pull-up resistor must be added externally to the STM32F100xx.

RM0041 Rev 6 649/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

Figure 268. CEC line connection

1. When configured as output open-drain alternate function, the Schmitt trigger is still activated.

Note: 1 If you do not need the power-off state, you may simply connect the STM32F100xx
microcontroller to the CEC line.

2 If the power-off state is needed in the application, the external pull-up circuit has to be
disconnected from the CEC line when the device is off. For example, this can be
implemented by connecting an isolating diode between the CEC line and the external pull-
up circuit, such that the diode is reverse-biased in the off state with an external device
pulling up the CEC line. A bidirectional isolation buffer is also needed to comply with the
HDMI 1.3a specification. For more details refer to AN3127: “CEC networking using
STM32F100xx value line microcontrollers”.

24.3.2 Message description

All transactions on the CEC line consist of an initiator and one or more followers. The
initiator is responsible for sending the message structure and the data. The follower is the
recipient of any data and is responsible for setting any acknowledgement bits.

A message is conveyed in a single frame that consists of a start bit followed by a header
block and, optionally, an opcode and a variable number of operand blocks.

All these blocks are made of a 8-bit payload (most significant bit transmitted first) followed
by an end-of-message (EOM) bit and an acknowledge (ACK) bit.

The EOM bit is set in the last block of a message and kept cleared in all others. In the event
that a message contains additional blocks after an EOM is indicated, those additional blocks
should be ignored. The EOM bit may be set in the header block to “ping” other devices, to
ascertain if they are active.

Table 135. HDMI pin

Name Signal type Remarks

CEC Bidirectional

Two states:

1 = high impedance
0 = low impedance

A 27 kΩ pull-up resistor must be added externally.

STM32F100xx

CEC line

CEC_RX

CEC_TX

HDMI_CEC
controler

APB
bus

CEC device

27 kΩ

3.3 V

CEC

GPI/O configured
as output open-drain
alternate function(1)

ai17314

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

650/709 RM0041 Rev 6

The acknowledge bit is always set to high impedance by the initiator so that it can be driven
low either by the follower that has read its own address in the header or by the follower that
needs to reject a broadcast message.

The header consists of the source logical address field, and the destination logical address
field. Note that the special address 0xF is used for broadcast messages.

Figure 269. Message structure

Figure 270. Blocks

24.3.3 Bit timing

The format of the start bit is unique and identifies the start of a message. It should be
validated by its low duration and its total duration.

All remaining data bits in the message, after the start bit, have consistent timing. The high-to
low transition at the end of the data bit is the start of the next data bit except for the final bit
where the CEC line remains high.

Figure 271. Bit timings

CEC Figure 272 shows an example bit with both initiator and follower where the follower
may assert the bit to logical 0 to acknowledge a data block. The initiator outputs a logical 1,
thus allowing the follower to change the CEC state by pulling the control line low for the
duration of the safe sample period.

Start
bit

high Operand

0 to 14 operands

high
impedance impedanceOperandOpcodeHeader

ai17315

EOM ACKDESTINATION[3:0]INITIATOR[3:0]Header block

Opcode/operand block EOM ACKDATA[7:0]

ai17316

Start bi t

high impedance

low impedance

3.7 ms ±0.2 ms
4.5 ms ±0.2 ms

Data bit

high impedance

low impedance

1.5 ms ±0.2 ms
2.4 ms ±0.35 ms

INITIATOR log ical 0

Data bit

high impedance

low impedance

0.6 ms ±0.2 ms

2.4 ms ±0.35 ms

INITIATOR log ical 1

ai17317

RM0041 Rev 6 651/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

Figure 272. Follower acknowledge (ACK)

24.4 Arbitration

24.4.1 Signal free time (SFT)

All devices that are to transmit or retransmit a message onto the CEC line have to ensure
that the line has been inactive for a number of bit periods. This signal free time (SFT) is
defined as the time from the start of the final bit of the previous frame, and depends on the
initiating device and the current status as shown in the table below.

Figure 273. Signal free time

24.4.2 Header arbitration

Figure 274. Arbitration phase

Since only one initiator is allowed at any one time, the header arbitration mechanism is
provided to avoid conflict when more than one initiator has to send a frame within the same
allowed SFT slot. Header arbitration begins with the leading edge of the start bit and

high impedance

low impedance

high impedance

low impedance

ai17767

2.4 ±0.35 ms

0.6 ±0.2 ms

2.4 ±0.35 ms

0.35 ms max.

Data bit initiator logical 1

Data bit follower logical 0

Table 136. Signal free time definition

Condition
Signal free time

(in nominal data bit periods)

Present initiator has to send another frame immediately after the
one it just sent

≥ 7

New initiator has to send a frame ≥ 5

Previous attempt to send frame unsuccessful ≥ 3

Previous message New message

Signal free time

ai17318

Start high impedance
bit EOM ACKDESTINATION[3:0]INITIATOR[3:0]

Arbitration phase

ai17319

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

652/709 RM0041 Rev 6

continues until the end of the initiator address bits within the header block. During the
header transmission period the initiator monitors the CEC line and if it detects a low
impedance while it is in the high impedance state, then it assumes that it has lost the
arbitration to a second initiator. Note that this process gives priority to the logical address
with the highest number of leading zeros and, ultimately, the TV (INITIATOR=0x0).

24.5 Error handling

24.5.1 BTE, BPE and Error bit generation

A received data bit (excluding the start bit) is considered invalid if:

• the period between the falling and the rising edge exceeds the tolerance margins as
defined by the HDMI-CEC Specification Rev1.3a, Sect5.5.2, Figure4. In this case a Bit
Timing Error (BTE) is issued.

• the period between falling edges exceeds the tolerance margins as defined by the
HDMI-CEC Specification, Rev1.3a Sect5.5.2, Figure4. In this case a Bit Period Error
(BPE) is issued.

• When both BPE and BTE are detected, BTE only is signalled.

If a BTE or BPE receive error is detected, the CEC peripheral is expected to notify such
events to the other followers, and primarily to the initiator, by generating an Error bit: a low
period on the CEC line of 1.4 to 1.6 times the nominal data bit period, that is, 3.6 ms
nominally.

Figure 275. Error bit timing

24.5.2 Message error

A message is considered lost and therefore may be retransmitted under the following
conditions:

• a message is not acknowledged in a directly addressed message

• a message is negatively acknowledged in a broadcast message

• a low impedance is detected on the CEC line when not expected (line error)

Retransmission should be attempted at least once and up to five times.

24.6 Device addressing

Apart from the physical address (refer to the HDMI-CECspecification for more details on
physical address discovery), each device appearing on the control signal line (CEC Line)
has a unique logical address. This address defines a device type as well as being a unique
identifier. This address is 0 for a TV set with physical address 0b0000 and 14 or even 15
otherwise. It is defined in the CEC_OAR register and in the upper nibble of the first byte of

Error bit

high impedance
low impedance

3.6 ms ±0.24 ms

ai17320

RM0041 Rev 6 653/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

the transmitted message. All CEC devices therefore have both a physical and a logical
address, whereas non-CEC devices only have a physical address.

Once their physical and logical addresses are known, each CEC device transmits them to
all other devices, thus allowing any device to create a map of the network.

24.7 HDMI-CEC functional description

24.7.1 Block diagram

The HDMI-CEC controller handles complete messages but requires the CPU to provide or
unload the data bytes one by one.

Figure 276 shows the CEC controller block diagram.

Figure 276. HDMI-CEC block diagram

1. The timing checker block verifies the received bit timings, while the timing generator controls the
transmitted bit timings.

24.7.2 Prescaler

The prescaler defines the time quantum for the timing checker and timing generator blocks.
Additionally, it provides a time quantum reference for complying with the required signal free
time (SFT). A 14-bit counter is used to provide the necessary 50 microsecond time base,
allowing high APB clocks frequency.

The counter is reset at the beginning of every bit for the timing checker block to operate with
the maximum precision.

Prescaler formula for nominal bit timings is:

ai17321

Shift register

Tx/Rx

RX buffer

TX buffer

Control logic

Configuration register

Own address register
Prescaler

Prescaler register

70

EO
M

Control/status register

Error status register

AC
KTiming checker

and generator CEC Line

PRESC 50 FAPB MHz〈 〉×[] 1–=

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

654/709 RM0041 Rev 6

24.7.3 Rx digital filter

CEC robustness in the face of CEC line perturbation is guaranteed by two noise rejection
mechanisms:

• high-frequency spikes are removed by a 2/3 majority voter applied on the Rx line
sampled at the system clock rate

• line rebounds are filtered until the next 50 µs time window entirely following any CEC
line transition

24.7.4 Rx bit timing

The CEC operates at a 50 µs time quantum since the bits timings are expressed with this
precision. It extracts valid bits from the CEC line and signals line errors when detected.

On a valid Rx falling edge, the value of the time counter is captured and reset. This value
indicates the total bit duration and is named m. If the captured value is outside the valid
range (see table below), a bit period error is detected and signalled by pulling the line low for
3.6 ms (typical).

On a valid Rx rising edge, the value of the time counter is captured and compared to valid
windows. This value indicates the low bit duration and is named n. If the low bit duration (the
timing between the falling and rising edges) is outside the valid range, a bit timing error is
detected and signalled by pulling the line low for 3.6 ms (typical) unless the device was
programmed not to report this type of violations.

Note: If a line error occurs while a start bit is expected, the whole message is ignored and no error
is reported.

In the absence of a rising edge, the time counter counts up to 25.6 ms. Retransmission is
allowed when its value is above 9.6 ms. A new initiator may transmit when the time counter
is above 14.4 ms. The same initiator must however wait until the counter reaches 19.2 ms.

Note: Due to Rx synchronization and digital filtering, all CEC timings are calculated with a
precision tolerance of 4 APB clock cycles.

Figure 277. Bit timing

high impedance

low impedance

ignored edges

m n0 1 n+1 9.6

RetransmissionQuantum counter
capture

Quantum counter
capture and reset

14.4

New initiator

19.2

Same initiator

25.6

ai17323b

RM0041 Rev 6 655/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24.7.5 Tx bit timing

The CEC is in charge of generating the proper line waveform to signal either a start bit, a
logical 0 data bit, a logical 1 data bit or an error bit. The same time quantum as in the Rx bit
timing logic is used.

Figure 278. Tx bit timing

Table 137. Bit status depending on the low bit duration (LBD)

Low bit duration (LBD)
(ms)

Bit

Standard mode
(BTEM = 0)(1)

1. BTEM is a bit of the CEC_CFGR register.

 Bit timing error-free
(BTEM = 1)(1)

0 ≤ LBD < 0.4 Bit timing error

Logical 10.4 ≤ LBD ≤ 0.8 Logical 1

0.8 < LBD ≤ 1.1
Bit timing error

1.1 < LBD < 1.3

Logical 01.3 ≤ LBD ≤ 1.7 Logical 0

1.7 < LBD < 3.5 Bit timing error

3.5 ≤ LBD ≤ 3.9 Start bit
Start bit

3.9 < LBD Bit timing error

Table 138. Bit status depending on the total bit duration (TBD)

Total bit duration (TBD)
(ms)

Bit

Standard mode
(BPEM = 0)(1)

1. BPEM is a bit of the CEC_CFGR register.

Flexible bit-period mode (BPEM = 1)(1)

Data bit Start bit

TBD < 2.05 Bit period error Bit period error

Bit period error2.05 ≤ TBD ≤ 2.75 Logical 0 or 1

Logical 0 or 1
2.75 < TBD < 4.3 Bit period error

4.3 ≤ TBD ≤ 4.7 Start bit
Start bit

4.7 < TBD(2)

2. The bit period error checking is not applicable for the last bit in the frame.

Bit period error

Time quantum 0

Start bit

Logical 0

Logical 1

Error bit

4.52.41.50.6 3.63.7

ai17324b

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

656/709 RM0041 Rev 6

24.7.6 CEC arbiter

The STM32F100xx CEC arbiter declines SFT and header arbitration techniques in the
following cases:

• CEC is a previous initiator retrying a failed transmission and

a) the leading edge of the start bit is detected before SFT = 9.6 ms. This only occurs
when a new initiator violates the SFT requirement. In this case CEC automatically
synchronizes to the end of the transmitted start bit and participates in the header
arbitration.

b) CEC initiates frame transmission after 4 nominal bit times (9.6 ms) of the signal
free time condition. CEC automatically switches to follower in case arbitration is
lost (even though no contending device is expected in this case).

• CEC is a new initiator that needs to send a frame and

a) the leading edge of the start bit is detected before SFT = 5 minimum bit times
(10.3 ms). This typically occurs when the previous initiator retries a failed
transmission. In this case, CEC automatically switches to reception. Transmission
is retried after the current frame.

b) the leading edge of the start bit is detected when SFT is between 10.3 ms and
14.4 ms. This is usually caused by a different initiator contending the CEC line.
STM32 CEC automatically synchronizes to the end of the transmitted start bit and
participates in the header arbitration.

c) CEC initiates frame transmission after 6 nominal bit times (14.4 ms) of the signal
free time condition. It automatically switches to follower in case the arbitration is
lost.

• CEC is the last initiator that has to send a frame immediately after its previous frame
and

a) the leading edge of the start bit is detected before SFT = 7 minimum bit times
(14.4 ms). This is caused by a new initiator. CEC automatically switches to
reception and transmission is retried after the current frame, when CEC is no
longer the last initiator.

b) the leading edge of the start bit is detected when SFT is between 14.4 ms and
19.2 ms. This might be caused by a new late initiator. CEC automatically
synchronizes to the end of the transmitted start bit and participates in the header
arbitration.

c) CEC initiates frame transmission after 8 nominal bit times (19.2 ms) of the signal
free time condition. CEC automatically switches to follower if the arbitration is lost
(even though no contending device is expected in this case).

Table 139. STM32 CEC arbitration

SFT (ms) < 9.6 < 10.3 < 14.4 < 19.2 ≥ 19.2

Same initiator retrying
failed transmission

enter
arbitration

frame started

New initiator switch to reception
enter

arbitration
frame started

Same initiator has to
send another frame

switch to reception
enter

arbitration
frame started

RM0041 Rev 6 657/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24.7.7 CEC states

Figure 279 shows the CEC controller state machine.

Figure 279. CEC control state machine

The CEC controller assumes one of the six states described below:

Disabled state

The Disabled state is entered either on an APB reset or on resetting the PE bit in the CEC
configuration register. Any ongoing transmission or reception is not interrupted and
completes normally. The controller actually switches to Disabled when the PE bit is read
back as 0. While the controller is in the Disabled state, activity on the CEC line is ignored
and the clock prescaler is stopped for minimum power consumption purposes. The
controller exits the Disabled state when the PE bit is set.

Idle state

The Idle state is entered whenever a message was transmitted or received successfully, or
an error was processed. While in the Idle state, the CEC controller waits for either a transmit
request (TSOM bit is set in the control status register) or a start bit.

RX state

The CEC controller enters the RX state when a start bit is detected and no message is
pending for transmission. Once the header has been received, the destination address is
compared to the value programmed in the own address register. If the two do not match and
the address is not the broadcast address 0xF, the block is not acknowledged and the
controller reverts to the Idle state. Otherwise, in case of a match, the controller remains in
the RX state where the host CPU is requested to retrieve all message bytes from the RX
buffer one by one. An available byte is signaled by the RBTF bit being set in the control

Disabled

Idle

Reset

PE = 1PE = 0

TSOM = 1 Start bit & TSOM = 0

Arbitration lost

TERR = 1 RERR = 1

RX_ERROR

REOM = 1 orTEOM = 1

TX_ERROR

RERR = 0

no address match

TERR = 0

TX RX

ai17325

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

658/709 RM0041 Rev 6

status register. The host CPU can either poll this register or enable interrupts in the
configuration status register to know whether a byte was received. If the RBTF bit is not
cleared by the time a new block is received, the newly received block is not acknowledged
to force the initiator to restart the message transmission, thus giving the host CPU a second
chance to retrieve all message bytes in time. Note that it is the responsibility of the software
driver to ignore messages where the number of operands is less than the number specified
for the opcode.
The figure below shows an example of a complete message reception.

Figure 280. Example of a complete message reception

The software has to respect the sequence described in the table below.

Table 140. Software sequence to respect when receiving a message

Software sequences
CEC_CSR register

R/W access

Status bits

RTBF
bit 7

RERR
bit 6

REOM
bit 5

RSOM
bit 4

Poll RBTF or wait until an interrupt occurs Read 0x00 0 0 0 0

A header is received (RTBF and RSOM are
set)

Read 0x90 or 0x91(1)

1. Two different values may be read from the control and status register since a message may have queued
for transmission but arbitration has been lost.

1 0 0 1

Read header from RX buffer - 1 0 0 1

Acknowledge received byte by writing 0x00 Write 0x00 0 0 0 0

Poll RBTF or wait until an interrupt occurs Read 0x00 0 0 0 0

An opcode is received (RBTF is set) Read 0x80 or 0x81 1 0 0 0

Read opcode from RX buffer - 1 0 0 0

Acknowledge received byte by writing 0x00 Write 0x00 0 0 0 0

Poll RBTF or wait until an interrupt occurs Read 0x00 0 0 0 0

An operand is received (RBTF is set) Read 0x80 or 0x81 1 0 0 0

Read Operand1 from RX buffer - 1 0 0 0

Acknowledge received byte by writing 0x00 Write 0x00 0 0 0 0

Poll RBTF or wait until an interrupt occurs Read 0x00 0 0 0 0

An operand is received, which is the last
data byte (RBTF and REOM are set)

Read 0xA0 or 0xA1 1 0 1 0

Read Operand2 from RX buffer - 1 0 1 0

Acknowledge received byte by writing 0x00 Write 0x00 0 0 0 0

Start HeaderbitCEC lin e

Inter rupt

RX buf fer Header Opcode Operand1 Operand2

(with EOM=1,
last data byte)

Opcode Operand1 Operand2

ai17326

RM0041 Rev 6 659/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

TX state

The controller enters the TX state when the TSOM bit is set in the control status register. In
this state, it has to make sure that the required signal free time elapses before generating a
start bit. That is, it has to wait for 9.6 ms if the previous state was TX_ERROR, 14.4 ms if
the device was previously receiving, 19.2 ms otherwise. This wait count is however
abandoned if another device transmits a start bit. At this point the CEC arbiter decides
whether to switch to reception or to participate in the arbitration phase. Note that it is the
responsibility of the software driver to send an initiator address consistent with the logical
address programmed in the own address register.
Arbitration is lost if the received initiator address, contained in the least significant nibble of
the shift register, differs from the initiator address still present in the TX buffer. In this case,
the controller switches to the RX state immediately. After the receive phase, it however
automatically retries transmitting until it is granted ownership of the bus.
If arbitration is not lost, a new byte should be written to the TX buffer each time the TBTRF
bit is set in the control status register. The host CPU can either poll the control register or
enable interrupts in the configuration register, to know whether a byte was transmitted. If it
does not achieve the required task on time, a transmit error flag is set. The TEOM bit is set
in the control status register to indicate that the message transmission was successful, but if
the TERR bit is set in the control status register, the message should be considered lost.

The following shows an example of a complete message transmission.

Figure 281. Example of a complete message transmission

The software must respect the sequence described below.

Table 141. Software sequence to respect when transmitting a message

Software sequences
CEC_CSR R/W

access

Status bits

TBTRF
bit 3

TERR
bit 2

TEOM
bit 1

TSOM
bit 0

Write header to TX buffer - 0 0 0 0

Initiate message transmission by writing
TSOM=1

Write 0x01 0 0 0 1

Poll TBTRF or wait until an interrupt occurs Read 0x01/0x00 0 0 0 1 then 0

The TX buffer is empty (TBTRF is set) Read 0x08 1 0 0 0

Write opcode to TX buffer - 1 0 0 0

Acknowledge byte request by writing 0x00 Write 0x00 0 0 0 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

The TX buffer is empty (TBTRF is set) Read 0x08 1 0 0 0

CEC line

TX buffer

(with EOM=1,
last data byte)

Start Headerbit

Header Opcode Operand1 Operand2

Opcode Operand1 Operand2

ai17327b

TSOM=1 TBTRF TBTRF TBTRF TBTRF

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

660/709 RM0041 Rev 6

TX_ERROR state

The TX_ERROR state is entered if one of the following error conditions occurs:

• a directly addressed message block is not acknowledged or a broadcast message
block is negatively acknowledged (acknowledge error)

• the TBTRF bit is not cleared while the requested byte needs to be transmitted (TBTFE
error)

• an unexpected bit is detected by the bit timing checker/generator (line error)

No error signalling mechanism is specified for the initiator, therefore no specific action is
undertaken apart from aborting the current message and clearing the transmit request flag
TSOM. The error handler decides if retransmission is possible depending on whether
transmission has already failed six times or not. It also sets the transmit request flag if
required.

The controller remains in the TX_ERROR state until the transmit error flag TERR is cleared.
It then waits for an interframe spacing of 2 bit times before of being ready to process the
next message.

An example of a message transmission with errors follows.

Figure 282. Example of a message transmission with transmission error

Write Operand1 to TX buffer - 1 0 0 0

Acknowledge byte request by writing 0x00 Write 0x00 0 0 0 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

Write Operand2 to TX buffer - 1 0 0 0

Acknowledge byte request and signal end of
message

Write 0x02 0 0 1 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

Message transmission is completed (TBTRF
and TEOM are set)

Read 0x0A 1 0 1 0

Acknowledge successful completion by
writing 0x0

Write 0x0 0 0 0 0

Table 141. Software sequence to respect when transmitting a message (continued)

Software sequences
CEC_CSR R/W

access

Status bits

TBTRF
bit 3

TERR
bit 2

TEOM
bit 1

TSOM
bit 0

CEC line

TX buffer

Start Headerbit

Header Opcode Operand1

Opcode Operand1

ai17328b

TSOM=1 TBTRF TBTRF

TERR due
to transmission
error

Message abort or retransmission

RM0041 Rev 6 661/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

The software must respect the following sequence in case of a transmission error:

24.7.8 CEC and system Stop mode

Each time the application does not have anything left to transmit on the CEC line, the
system can switch to the low-power Stop mode while waiting for a CEC message.

After wakeup from Stop mode the system runs on the HSI oscillator and the Start bit
tolerance is 200 µs. So, the application only has 200 µs to restore the system clock, if
needed. You can then choose to clock the system by PLL (with the HSI as the PLL source),
or, let the system run on the HSI. In both cases, the CEC prescaler has to be re-adjusted, if
needed, before entering the Stop mode.

To switch the system to the low-power Stop mode, and then wake it up on receiving new
CEC data without loosing the received data, execute the following procedure:

1. Perform a write clear to the peripheral enable (PE) bit in the CEC configuration register,
then read back the PE bit value until it is seen at 0. The hardware clears the PE bit

Table 142. Software sequence to respect when transmitting a message

Software sequences
CEC_CSR R/W

access

Status bits

TBTRF
bit 3

TERR
bit 2

TEOM
bit 1

TSOM
bit 0

Write header to TX buffer - 0 0 0 0

Initiate message transmission by writing TSOM=1 Write 0x01 0 0 0 1

Poll TBTRF or wait until an interrupt occurs Read 0x00/0x01 0 0 0 1 then 0

The TX buffer is empty (TBTRF is set) Read 0x08 1 0 0 0

Write opcode to TX buffer - 1 0 0 0

Acknowledge byte request by writing 0x00 Write 0x00 0 0 0 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

The TX buffer is empty (TBTRF is set) Read 0x08 1 0 0 0

Write Operand1 to TX buffer - 1 0 0 0

Acknowledge byte request by writing 0x00 Write 0x00 0 0 0 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

The TX buffer is empty (TBTRF is set) Read 0x08 1 0 0 0

Write Operand2 to TX buffer - 1 0 0 0

Acknowledge byte request and signal end of
message

Write 0x02 0 0 1 0

Poll TBTRF or wait until an interrupt occurs Read 0x00 0 0 0 0

Message transmission is completed (TBTRF and
TEOM are set)

Read 0x0E 1 1 1 0

If TERR=1, read error code from error status register - 1 1 1 0

Load header for retransmission if less than 5 retries - 1 1 1 0

Acknowledge error and possibly request
retransmission

Write 0x00 or
0x01

0 0 0 0/1

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

662/709 RM0041 Rev 6

when the current frame (if any) transmission is complete. Once PE is cleared, the
HDMI-CEC peripheral is disabled and the CEC line signal is ignored. This operation
ensures that the device safely enters the system Stop mode. Otherwise the system
clock might stop while the CEC device is in the low impedance state, for example
during a handshake bit. In such a case the CEC line gets stuck, causing all of the CEC
nodes to be blocked in a stalled condition.

2. Write the CEC prescaler register according to the selected clock you want to use when
the system woken up from the Stop mode.

3. Enable the CEC peripheral (PE = 1).

4. Configure the CEC line to generate an external asynchronous interrupt on the falling
edge, to wake up the system upon detection of the leading edge of the next start bit.

5. Enter the system Stop mode. The system clock shuts down.

6. When the EXTI falling edge is detected, the system resumes from Stop mode. The
STM32F100xx system wakeup is fast enough to allow correct start bit detection.

For more details on CEC wakeup from Stop mode refer to the AN3127: “CEC networking
using STM32F100xx value line microcontrollers”.

Figure 283. CEC and system Stop mode

24.8 HDMI-CEC interrupts

An interrupt can be produced:

• during reception if a receive block transfer completes or if a receive error occurs

• during transmission if a Transmit block transfer completes or if a transmit error occurs

write PE=0

read

CEC

CEC enable
 PE=1

System Stop
mode

System Run PE=0?

Run

CEC start bit
EXTI generated

No
Yes

ai17322

Adjust CEC prescaler

Adjust the system clock
if needed

Table 143. HDMI-CEC interrupts

Interrupt event Event flag Enable control bit

Receive byte/block transfer finished RBTF IE

Receive error RERR IE

Transmit byte request or block transfer finished TBTRF IE

Transmit error TERR IE

RM0041 Rev 6 663/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24.9 HDMI-CEC registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

24.9.1 CEC configuration register (CEC_CFGR)

This register is used to configure the HDMI-CEC controller.

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BPEM BTEM IE PE

rw rw rw rs

Bits 31:4 Reserved, must be kept cleared.

Bit 3 BPEM: Bit period error mode

This bit is set/cleared by software.

0: Standard mode
1: Flexible bit-period mode

Bit 2 BTEM: Bit timing error mode

This bit is set/cleared by software.

0: Standard mode
1: Bit timing error-free mode

Bit 1 IE: Interrupt enable

This bit is set/cleared by software. It is used to activate an interrupt associated with the set of
RTBF, RERR, TBTRF or TERR flags.

0: Interrupt disabled
1: Interrupt enabled

Bit 0 PE: Peripheral enable

This bit is set by software, cleared by hardware as soon as the CEC state is Idle.

0: Peripheral disabled
1: Peripheral enabled

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

664/709 RM0041 Rev 6

24.9.2 CEC own address register (CEC_OAR)

This register is written by the software to define the address of the CEC device.

Address offset: 0x4

Reset value: 0x0000 0000

24.9.3 CEC prescaler register (CEC_PRES)

This register is written by the software to reach the required bit time versus the APB clock
frequency.

Address offset: 0x8

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OA[3:0]

rw

Bits 31:4 Reserved, must be kept cleared.

Bits 3:0 OA[3:0]: Own address

These bits are written by software to define the own address of the CEC device.

Default value 0x0 is the TV address as defined in the HDMI specification.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PRESC[13:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, must be kept cleared.

Bits 13:0 PRESC[13:0]: Prescaler counter value

These bits are written by software to adjust the internal prescaler counter to generate the
required 50 µs time base.

PRESC must be selected to respect the following formula: PRESC = 50 x fPCLK (MHz) - 1
where PRESC must be an integer.

Example: if fPCLK = 24 MHz, then PRESC must be programmed to 1199(0x4AF)

RM0041 Rev 6 665/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24.9.4 CEC error status register (CEC_ESR)

CEC_ESR is the CEC error status register. It contains all the error flags related to the
communication.

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TBTFE LINE ACKE SBE RBTFE BPE BTE

r r r r r r r

Bits 31:7 Reserved, must be kept cleared.

Bit 6 TBTFE: Tx block transfer finished error

This bit is set by hardware when the TBTRF bit is not cleared while the requested byte needs
to be transmitted.

It is cleared by software when clearing the TX error flag (TERR) of the CEC_CSR register.

Bit 5 LINE: Line error

This bit is set by hardware when the CEC line is detected low although it is driven to high
impedance while not in the arbitration phase or during the ACK bit.

It is cleared by software by clearing the TX error flag (TERR) in the CEC_CSR register.

Bit 4 ACKE: Block acknowledge error

This bit is set by hardware when a directly addressed message block is not acknowledged or
when a broadcast message block is negatively acknowledged.

It is cleared by software when clearing the TX error flag (TERR) or the Rx error flag (RERR) in
the CEC_CSR register.

Bit 3 SBE: Start bit error

This bit is set by hardware when the start bit (identified by its low duration only, that is, an error
bit), is detected before the end of a message.

It is cleared by software by clearing the Rx error flag (RERR) in the CEC_CSR register.

Bit 2 RTBFE: Rx block transfer finished error

This bit is set by hardware when the RBTF bit is not cleared while a new byte is ready to be
written to the RX buffer.

It is cleared by software by clearing the Rx error flag (RERR) in the CEC_CSR register.

Bit 1 BPE: Bit period error

This bit is set by hardware when the time between two falling edges on the CEC line is too
short in Bit period error mode or out of specification in Safe mode, start bit excepted. It is not
set if BTE was previously set.

It is cleared by software by clearing the Rx error flag (RERR) in the CEC_CSR register.

Bit 0 BTE: Bit timing error

This bit is set by hardware when an incorrect rising edge position is detected on the CEC line
while in Safe mode, start bit excepted.

It is cleared by software by clearing the Rx error flag (RERR) in the CEC_CSR register.

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

666/709 RM0041 Rev 6

24.9.5 CEC control and status register (CEC_CSR)

CEC_CSR is the CEC control & status register. It contains all the flags related to the
communication and some control bits to be managed during the communication.

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RBTF RERR REOM RSOM TBTRF TERR TEOM TSOM

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw rs

Bits 31:8 Reserved, must be kept cleared.

Bit 7 RBTF: Rx byte/block transfer finished

This bit is set by hardware when a data byte has been received. If the IE bit in the CEC_CFGR
register is set, an interrupt is generated.

It is cleared by software by writing it to 0 to acknowledge the event and clear the associated
interrupt.

Bit 6 RERR: Rx error

This bit is set by hardware when a reception error occurs. The software can read the
CEC_ESR register to better know which error occurred. If the IE bit in the CEC_CFGR register
is set, an interrupt is generated.

It is cleared by software by writing it to 0 to acknowledge the error and clear the associated
interrupt.

Bit 5 REOM: Rx end of message

This bit is set by hardware when the last date byte of a message has been received.

It is cleared by software by writing it to 0 to acknowledge the event.

Note: Do not clear the REOM bit before the RBTF flag/interrupt is set.

Bit 4 RSOM: Rx start of message

This bit is set by hardware when a header byte is received.

It is cleared by software by writing it to 0 to acknowledge the event.

Bit 3 TBTRF: Tx byte transfer request or block transfer finished

This bit is set by hardware either to request a new data byte when TEOM is not set or to signal
the successful transmission of the message when TEOM is set. If the IE bit in the CEC_CFGR
register is set, an interrupt is generated.

It is cleared by software by writing it to 0 to acknowledge the event and clear the associated
interrupt.

RM0041 Rev 6 667/709

RM0041 High-definition multimedia interface-consumer electronics control controller (HDMI™-

668

24.9.6 CEC Tx data register (CEC_TXD)

Address offset: 0x14

Reset value: 0x0000 0000

24.9.7 CEC Rx data register (CEC_RXD)

Address offset: 0x18

Reset value: 0x0000 0000

Bit 2 TERR: Tx error

This bit is set by hardware when a transmission error occurs. The software can read the
CEC_ESR register to better know which error occurred. If the IE bit in the CEC_CFGR register
is set, an interrupt is generated.

It is cleared by software by writing it to 0 to acknowledge the error and clear the associated
interrupt.

Bit 1 TEOM: Tx end of message

This bit is set and cleared by software except if RTBF or RERR is set.

0: the data byte will be transmitted without any EOM bit
1: the data byte will be transmitted with an EOM bit, signalling the end of the message

Bit 0 TSOM: Tx start of message

This bit is set by software to request transmission of a new message. The TX data byte is
supposed to contain the header byte.

It is cleared by hardware when access to bus is granted or when a transmission error has
occurred.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TXD[7:0]

rw

Bits 31:8 Reserved, must be kept cleared.

Bits 7:0 TXD[7:0]: Tx Data register.

Data byte to be transmitted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RXD[7:0]

r

Bits 31:8 Reserved, must be kept cleared.

Bits 7:0 RXD[7:0]: Rx data register.

This is a read-only register which contains the last data byte that was received.

High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)

668/709 RM0041 Rev 6

24.9.8 HDMI-CEC register map

The following table summarizes the HDMI-CEC registers.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 144. HDMI-CEC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
CEC_CFGR

Reserved

B
P

E
M

B
T

E
M

IE P
E

Reset value 0 0 0 0

0x04
CEC_OAR

Reserved
OAR[3:0]

Reset value 0 0 0 0

0x08
CEC_PRE

Reserved
PRESC[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
CEC_ESR

Reserved

T
B

T
F

E

L
IN

E

A
C

K
E

S
B

E

R
B

T
F

E

B
P

E

B
T

E

Reset value 0 0 0 0 0 0 0

0x10
CEC_CSR

Reserved R
B

T
F

R
E

R
R

R
E

O
M

R
S

O
M

T
B

T
R

F

T
E

R
R

T
E

O
M

T
S

O
M

Reset value 0 0 0 0 0 0 0 0

0x14
CEC_TXD

Reserved
TXD[7:0]

Reset value 0 0 0 0 0 0 0 0

0x18
CEC_RXD

Reserved
RXD[7:0]

Reset value 0 0 0 0 0 0 0 0

RM0041 Rev 6 669/709

RM0041 Debug support (DBG)

698

25 Debug support (DBG)

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

25.1 Overview

The STM32F100xx are built around a Cortex®-M3 core which contains hardware extensions
for advanced debugging features. The debug extensions allow the core to be stopped either
on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the
core’s internal state and the system’s external state may be examined. Once examination is
complete, the core and the system may be restored and program execution resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32F100xx MCUs.

Two interfaces for debug are available:

• Serial wire

• JTAG debug port

Debug support (DBG) RM0041

670/709 RM0041 Rev 6

Figure 284. Block diagram of STM32 MCU and Cortex®-M3-level debug support

Note: The debug features embedded in the Cortex®-M3 core are a subset of the Arm® CoreSight
Design Kit.

The Arm® Cortex®-M3 core provides integrated on-chip debug support. It is comprised of:

• SWJ-DP: Serial wire / JTAG debug port

• AHP-AP: AHB access port

• ITM: Instrumentation trace macrocell

• FPB: Flash patch breakpoint

• DWT: Data watchpoint trigger

• TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)

It also includes debug features dedicated to the STM32F100xx:

• Flexible debug pinout assignment

• MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the Arm® Cortex®-M3 core, refer
to the Cortex®-M3 -r1p1 Technical Reference Manual and to the CoreSight Design Kit-r1p0
TRM (see Section 25.2).

Cortex-M3
core

SWJ-DP AHB-AP
Bridge

NVIC

DWT

FPB

ITM

TPIU

DCode
interface

System
interface

Internal private
peripheral bus (PPB)

External private
peripheral bus (PPB)

Bus matrix

Data

Trace port

DBGMCU

STM32F100xx debug sup port
Cortex-M3 debug suppo rt

JTMS/

JTDI

JTDO/

NJTRST

JTCK/

SWDIO

SWCLK

TRACESWO

TRACESWO

TRACECK

TRACED[3:0]

ai17305

RM0041 Rev 6 671/709

RM0041 Debug support (DBG)

698

25.2 Reference Arm® documentation

• Cortex®-M3 r1p1 Technical Reference Manual (TRM)

It is available from:

http://infocenter.arm.com/

• Arm® Debug Interface V5

• Arm® CoreSight Design Kit revision r1p1 Technical Reference Manual

25.3 SWJ debug port (serial wire and JTAG)

The core of the STM32F100xx integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is
an Arm® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a
SW-DP (2-pin) interface.

• The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the
AHP-AP port.

• The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.

Figure 285. SWJ debug port

Figure 285 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

Debug support (DBG) RM0041

672/709 RM0041 Rev 6

25.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.

This sequence is:

1. Send more than 50 TCK cycles with TMS (SWDIO) =1

2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)

3. Send more than 50 TCK cycles with TMS (SWDIO) =1

25.4 Pinout and debug port pins

The STM32F100xx MCUs are available in various packages with different numbers of
available pins. As a result, some functionality (ETM) related to pin availability may differ
between packages.

25.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32F100xx for the SWJ-DP as alternate functions
of general-purpose I/Os. These pins are available on all packages.

25.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).

However, the STM32F100xx MCU implements the AF remap and debug I/O configuration
register (AFIO_MAPR) register to disable some part or all of the SWJ-DP port and so
releases the associated pins for General Purpose IOs usage. This register is mapped on an
APB bridge connected to the Cortex®-M3 System Bus. Programming of this register is done
by the user software program and not the debugger host.

Table 145. SWJ debug port pins

SWJ-DP pin name
JTAG debug port SW debug port Pin

assignment
Type Description Type Debug assignment

JTMS/SWDIO I JTAG Test Mode Selection IO Serial Wire Data Input/Output PA13

JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14

JTDI I JTAG Test Data Input - - PA15

JTDO/TRACESWO O JTAG Test Data Output -
TRACESWO if async trace is
enabled

PB3

NJTRST I JTAG Test nReset - - PB4

RM0041 Rev 6 673/709

RM0041 Debug support (DBG)

698

Three control bits allow the configuration of the SWJ-DP pin assignments. These bits are
reset by the System Reset.

• AFIO_MAPR (@ 0x40010004 in the STM32F100xx MCU)

– READ: APB - No Wait State

– WRITE: APB - 1 Wait State if the write buffer of the AHB-APB bridge is full.

Bit 26:24= SWJ_CFG[2:0]

Set and cleared by software.

These bits are used to configure the number of pins assigned to the SWJ debug port.
The goal is to release as much as possible the number of pins to be used as General
Purpose IOs if using a small size for the debug port.

The default state after reset is “000” (whole pins assigned for a full JTAG-DP
connection). Only one of the 3 bits can be set (it is forbidden to set more than one bit).

Note: When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
AFIO_MAPR register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

• Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)

• Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).

25.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on
the JTAG input pins:

• NJTRST: Internal pull-up

• JTDI: Internal pull-up

• JTMS/SWDIO: Internal pull-up

• TCK/SWCLK: Internal pull-down

Table 146. Flexible SWJ-DP pin assignment

Available debug ports

SWJ IO pin assigned

PA13 /
JTMS /
SWDIO

PA14 /
JTCK /
SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4 /
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X X

Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

Debug support (DBG) RM0041

674/709 RM0041 Rev 6

Once a JTAG IO is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the I/Os in the equivalent state:

• NJTRST: Input pull-up

• JTDI: Input pull-up

• JTMS/SWDIO: Input pull-up

• JTCK/SWCLK: Input pull-down

• JTDO: AF output floatingInput floating

The software can then use these I/Os as standard GPIOs.

Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for JTCK, the device needs an integrated
pull-down.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

RM0041 Rev 6 675/709

RM0041 Debug support (DBG)

698

25.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must set
SWJ_CFG=010 just after reset. This releases PA15, PB3 and PB4 which now become
available as GPIOs.

When debugging, the host performs the following actions:

• Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).

• Under system reset, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.

• Still under system reset, the debugger sets a breakpoint on vector reset.

• The system reset is released and the Core halts.

• All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they are first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin
configuration in the IOPORT controller has no effect.

25.5 STM32F100xx JTAG TAP connection

The STM32F100xx MCUs integrate two serially connected JTAG TAPs, the boundary scan
TAP (IR is 5-bit wide) and the Cortex®-M3 TAP (IR is 4-bit wide).

To access the TAP of the Cortex®-M3 for debug purposes:

1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.

2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted in using the BYPASS instruction.

3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.

Note: Important: Once Serial-Wire is selected using the dedicated Arm® JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).

Debug support (DBG) RM0041

676/709 RM0041 Rev 6

Figure 286. JTAG TAP connections

Boundary scan
TAP

NJTRST

Cortex-M3 TAP

JTMS

TMS nTRSTTMS nTRST

JTDI

JTDO

TDI TDO TDI TDO

SW-DP
selected

STM32F100xx

IR is 5-bit wide IR is 4-bit wide

ai17306

RM0041 Rev 6 677/709

RM0041 Debug support (DBG)

698

25.6 ID codes and locking mechanism

There are several ID codes inside the STM32F100xx MCUs. ST strongly recommends tools
designers to lock their debuggers using the MCU DEVICE ID code located in the external
PPB memory map at address 0xE0042000.

25.6.1 MCU device ID code

The STM32F100xx MCUs integrate an MCU ID code. This ID identifies the ST MCU part-
number and the die revision. It is part of the DBG_MCU component and is mapped on the
external PPB bus (see Section 25.15). This code is accessible using the JTAG debug port
(four to five pins) or the SW debug port (two pins) or by the user software. It is even
accessible while the MCU is under system reset.

Only the DEV_ID[11:0] must be used for identification by the debugger/programmer tools.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID[15:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DEV_ID[11:0]

r r r r r r r r r r r r

Bits 31:16 REV_ID[15:0] Revision identifier

This field indicates the revision of the device:
In low and medium density value line devices:

– 0x1000 = Revision A

– 0x1001 = Revision Z
In high density value line devices:

– 0x1000 = Revision A

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DEV_ID[11:0]: Device identifier

This field indicates the device ID.
For low- and medium-density value line devices, the device ID is 0x420
For high-density value line devices, the device ID is 0x428

Debug support (DBG) RM0041

678/709 RM0041 Rev 6

25.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32F100xx BSC (boundary scan) integrates a JTAG ID code equal to

• In low and medium-density value line devices:

– 0x06420041 = Revision A and Revision Z

• In high-density value line devices:

– 0x06428041 = Revision A

25.6.3 Cortex®-M3 TAP

The TAP of the Arm® Cortex®-M3 integrates a JTAG ID code. This ID code is the Arm®
default one and has not been modified. This code is only accessible by the JTAG Debug
Port, it is 0x3BA00477 (corresponds to Cortex®-M3 r1p1-01rel0, see Section 25.2).

25.6.4 Cortex®-M3 JEDEC-106 ID code

The Arm® Cortex®-M3 integrates a JEDEC-106 ID code. It is located in the 4 KB ROM table
mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.

25.7 JTAG debug port

A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex®-M3 r1p1 Technical Reference Manual
(TRM), for references, see Section 25.2).

Table 147. JTAG debug port data registers

IR(3:0) Data register Details

1111
BYPASS

[1 bit]
-

1110
IDCODE

[32 bits]

ID CODE

0x3BA00477 (Arm® Cortex®-M3 r1p1-01rel0 ID Code)

1010
DPACC

[35 bits]

Debug port access register

This initiates a debug port and allows access to a debug port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

Refer to Table 148 for a description of the A[3:2] bits

RM0041 Rev 6 679/709

RM0041 Debug support (DBG)

698

1011
APACC

[35 bits]

Access port access register

Initiates an access port and allows access to an access port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

There are many AP registers (see AHB-AP) addressed as the
combination of:

– The shifted value A[3:2]

– The current value of the DP SELECT register

1000
ABORT

[35 bits]

Abort register

– Bits 31:1 = Reserved

– Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 148. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A[3:2] value Description

0x0 00 Reserved, must be kept at reset value.

0x4 01

DP CTRL/STAT register. Used to:

– Request a system or debug power-up

– Configure the transfer operation for AP accesses

– Control the pushed compare and pushed verify operations.

– Read some status flags (overrun, power-up acknowledges)

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.

– Bits 31:24: APSEL: select the current AP

– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

Table 147. JTAG debug port data registers (continued)

IR(3:0) Data register Details

Debug support (DBG) RM0041

680/709 RM0041 Rev 6

25.8 SW debug port

25.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

• SWCLK: clock from host to target

• SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ
recommended by Arm®).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

25.8.2 SW protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

Refer to the Cortex®-M3 r1p1 TRM for a detailed description of DPACC and APACC
registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

Table 149. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access

1: AP Access

2 RnW
0: Write Request

1: Read Request

4:3 A[3:2] Address field of the DP or AP registers (refer to Table 148)

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target because of
the pull-up

RM0041 Rev 6 681/709

RM0041 Debug support (DBG)

698

The ACK Response must be followed by a turnaround time only if it is a READ transaction
or if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

25.8.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default Arm® one and is set to
0x1BA01477 (corresponding to Cortex®-M3 r1p1).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

• The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles

• The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles
after RESET state.

• After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target issues a FAULT
acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex®-M3 r1p1 TRM and
the CoreSight Design Kit r1p0 TRM.

25.8.4 DP and AP read/write accesses

• Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

• Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

• The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of

Table 150. ACK response (3 bits)

Bit Name Description

0..2 ACK

001: FAULT

010: WAIT

100: OK

Table 151. DATA transfer (33 bits)

Bit Name Description

0..31 WDATA or RDATA Write or Read data

32 Parity Single parity of the 32 data bits

Debug support (DBG) RM0041

682/709 RM0041 Rev 6

IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles must be applied while driving the line low (IDLE state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it fails.

25.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

25.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP registers (see AHB-AP) addressed as the combination of:

• The shifted value A[3:2]

• The current value of the DP SELECT register

Table 152. SW-DP registers

A[3:2] R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read - IDCODE
The manufacturer code is not set to ST code.
0x1BA01477 (identifies the SW-DP)

00 Write - ABORT -

01 Read/Write 0
DP-
CTRL/STAT

Purpose is to:

– request a system or debug power-up

– configure the transfer operation for AP
accesses

– control the pushed compare and pushed verify
operations.

– read some status flags (overrun, power-up
acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial port
protocol (like the duration of the turnaround
time)

10 Read -
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without repeating
the original AP transfer.

10 Write - SELECT
The purpose is to select the current access port
and the active 4-words register window

11 Read/Write -
READ
BUFFER

This read buffer is useful because AP accesses
are posted (the result of a read AP request is
available on the next AP transaction).

This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

RM0041 Rev 6 683/709

RM0041 Debug support (DBG)

698

25.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP

Features:

• System access is independent of the processor status.

• Either SW-DP or JTAG-DP accesses AHB-AP.

• The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.

• Bitband transactions are supported.

• AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:

d) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register

e) Bits [3:2] = the 2 address bits of A[3:2] of the 35-bit packet request for SW-DP.

The AHB-AP of the Cortex®-M3 includes 9 x 32-bits registers:

Refer to the Cortex®-M3 r1p1 TRM for further details.

Table 153. Cortex®-M3 AHB-AP registers

Address
offset

Register name Notes

0x00
AHB-AP Control and Status
Word

Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type

0x04 AHB-AP Transfer Address -

0x0C AHB-AP Data Read/Write -

0x10 AHB-AP Banked Data 0

Directly maps the 4 aligned data words without rewriting
the Transfer Address register.

0x14 AHB-AP Banked Data 1

0x18 AHB-AP Banked Data 2

0x1C AHB-AP Banked Data 3

0xF8 AHB-AP Debug ROM Address Base Address of the debug interface

0xFC AHB-AP ID register -

Debug support (DBG) RM0041

684/709 RM0041 Rev 6

25.10 Core debug

Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).

It consists of 4 registers:

Note: Important: these registers are not reset by a system reset. They are only reset by a power-
on reset.

Refer to the Cortex®-M3 r1p1 TRM for further details.

To Halt on reset, it is necessary to:

• enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control register

• enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status register.

Table 154. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core register Selector register:

This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core register Data register:

This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control register:

This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.

RM0041 Rev 6 685/709

RM0041 Debug support (DBG)

698

25.11 Capability of the debugger host to connect under system
reset

The reset system of the STM32F100xx MCU comprises the following reset sources:

• POR (power-on reset) which asserts a RESET at each power-up.

• Internal watchdog reset

• Software reset

• External reset

The Cortex®-M3 differentiates the reset of the debug part (generally PORRESETn) and the
other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core immediately halts without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.

Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.

25.12 FPB (Flash patch breakpoint)

The FPB unit:

• implements hardware breakpoints

• patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

• 2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space.

• 6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.

Debug support (DBG) RM0041

686/709 RM0041 Rev 6

25.13 DWT (data watchpoint trigger)

The DWT unit consists of four comparators. They are configurable as:

• a hardware watchpoint or

• a PC sampler or

• a data address sampler

The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:

• Clock cycle

• Folded instructions

• Load store unit (LSU) operations

• Sleep cycles

• CPI (clock per instructions)

• Interrupt overhead

25.14 ITM (instrumentation trace macrocell)

25.14.1 General description

The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:

• Software trace. Software can write directly to the ITM stimulus registers to emit
packets.

• Hardware trace. The DWT generates these packets, and the ITM emits them.

• Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex®-M3 clock or the bit clock rate of the
Serial Wire Viewer (SWV) output clocks the counter.

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control register must be enabled
before programming or using the ITM.

25.14.2 Time stamp packets, synchronization and overflow packets

Time stamp packets encode time stamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

RM0041 Rev 6 687/709

RM0041 Debug support (DBG)

698

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace Control
register must be set.

Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
sends only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.

Table 155. Main ITM registers

Address Register Details

@E0000FB0 ITM lock access
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers

@E0000E80 ITM trace control

Bits 31-24 = Always 0

Bits 23 = Busy

Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data.

Bits 15-10 = Always 0

Bits 9:8 = TSPrescale = Time Stamp Prescaler

Bits 7-5 = Reserved

Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock).

Bit 3 = DWTENA: Enable the DWT Stimulus

Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets.

Bit 1 = TSENA (Timestamp Enable)

Bit 0 = ITMENA: Global Enable Bit of the ITM

@E0000E40 ITM trace privilege

Bit 3: mask to enable tracing ports31:24

Bit 2: mask to enable tracing ports23:16

Bit 1: mask to enable tracing ports15:8

Bit 0: mask to enable tracing ports7:0

@E0000E00 ITM trace enable
Each bit enables the corresponding Stimulus port to generate
trace.

@E0000000-
E000007C

Stimulus port
registers 0-31

Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out.

Debug support (DBG) RM0041

688/709 RM0041 Rev 6

Example of configuration

To output a simple value to the TPIU:

• Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to
Section 25.16.2 and Section 25.15.3)

• Write 0xC5ACCE55 to the ITM Lock Access register to unlock the write access to the
ITM registers

• Write 0x00010005 to the ITM Trace Control register to enable the ITM with Sync
enabled and an ATB ID different from 0x00

• Write 0x1 to the ITM Trace Enable register to enable the Stimulus Port 0

• Write 0x1 to the ITM Trace Privilege register to unmask stimulus ports 7:0

• Write the value to output in the Stimulus Port register 0: this can be done by software
(using a printf function)

25.15 MCU debug component (DBGMCU)

The MCU debug component helps the debugger provide support for:

• Low-power modes

• Clock control for timers, watchdog, I2C during a breakpoint

• Control of the trace pins assignment

25.15.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

• In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This feeds HCLK with the same clock that is provided to FCLK (system
clock previously configured by the software).

• In Stop mode, the bit DBG_STOP must be previously set by the debugger. This
enables the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

25.15.2 Debug support for timers, watchdog and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog must
behave:

• They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

• They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

RM0041 Rev 6 689/709

RM0041 Debug support (DBG)

698

For timers having complementary outputs, when the counter is stopped
(DBG_TIMx_STOP = 1), the outputs are disabled (as if the MOE bit was reset) for safety
purposes.

25.15.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

• Low-power mode support

• Timer and watchdog counter support

• Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

DBGMCU_CR register

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DBG_
TIM14
_STO

P

DBG_
TIM13
_STO

P

DBG_
TIM12_
STOP

DBG_
TIM17
_STO

P

DBG_
TIM16
_STO

P

DBG_
TIM15
_STO

P
Res.

DBG_
TIM7_
STOP

DBG_
TIM6_
STOP

DBG_
TIM5_
STOP Res.

DBG_I2C2
SMBUS
TIMEOUT

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBG_I2C1
SMBUS
TIMEOUT Res.

DBG_
TIM4_
STOP

DBG_
TIM3_
STOP

DBG_
TIM2_
STOP

DBG_
TIM1_
STOP

DBG_
WWDG

_
STOP

DBG_
IWDG
STOP

TRACE_
MODE
[1:0]

TRACE
_

IOEN Reserved

DBG_
STAND

BY

DBG_
STOP

DBG_
SLEEP

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:25 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x = 12..14)

0: The clock of the involved timer counter is fed even if the core is halted
1: The clock of the involved timer counter is stopped when the core is halted

Bits 24:22 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x = 17..15)

0: The clock of the involved timer counter is fed even if the core is halted
1: The clock of the involved timer counter is stopped when the core is halted

Bit 21 Reserved, must be kept at reset value.

Debug support (DBG) RM0041

690/709 RM0041 Rev 6

Bits 20:18 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=5 .. 7)

0: The clock of the involved timer counter is fed even if the core is halted, and the outputs
behave normally.
1: The clock of the involved timer counter is stopped when the core is halted, and the
outputs are disabled (as if there were an emergency stop in response to a break event).

Bit 17 Reserved, must be kept at reset value.

Bit 16 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 15 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bits 13:10 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=4..1)

Bit 9 DBG_WWDG_STOP: Debug window watchdog stopped when core is halted

0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted

Bit 8 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The watchdog counter clock continues even if the core is halted
1: The watchdog counter clock is stopped when the core is halted

Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control

– With TRACE_IOEN=0:

TRACE_MODE=xx: TRACE pins not assigned (default state)

– With TRACE_IOEN=1:

– TRACE_MODE=00: TRACE pin assignment for Asynchronous mode

– TRACE_MODE=01: TRACE pin assignment for Synchronous mode with a
TRACEDATA size of 1

– TRACE_MODE=10: TRACE pin assignment for Synchronous mode with a
TRACEDATA size of 2

– TRACE_MODE=11: TRACE pin assignment for Synchronous mode with a
TRACEDATA size of 4

Bits 4:3 Reserved, must be kept at reset value.

RM0041 Rev 6 691/709

RM0041 Debug support (DBG)

698

25.16 TPIU (trace port interface unit)

25.16.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM.

The output data stream encapsulates the trace source ID, that is then captured by a trace
port analyzer (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Bit 1 DBG_STOP: Debug Stop mode

0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the MHz internal RC oscillator (HSI)). Consequently, the
software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as
previously configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).

Debug support (DBG) RM0041

692/709 RM0041 Rev 6

Figure 287. TPIU block diagram

formatter
Trace out
(serializer)

TRACECLKIN

TRACECK

TRACEDATA
[3:0]

TRACESWO

CLK domain TRACECLKIN domain

External PPB bus

TPIU

TPIU

Asynchronous
FIFOITM

ai17307

RM0041 Rev 6 693/709

RM0041 Debug support (DBG)

698

25.16.2 TRACE pin assignment

• Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).

• Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG
mode and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the
TRACE_IOEN and TRACE_MODE bits in the MCU Debug component configuration
register. This configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).

• Asynchronous mode: 1 extra pin is needed

• Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4):

– TRACECK

– TRACED(0) if port size is configured to 1, 2 or 4

– TRACED(1) if port size is configured to 2 or 4

– TRACED(2) if port size is configured to 4

– TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration register (DBGMCU_CR). By default
the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.

Table 156. Asynchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32F100xx pin

assignment
Type Description

TRACESWO O TRACE Async Data Output PB3

Table 157. Synchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32F100xxpin

assignment
Type Description

TRACECK O TRACE Clock PE2

TRACED[3:0] O
TRACE Sync Data Outputs

Can be 1, 2 or 4.
PE[6:3]

Debug support (DBG) RM0041

694/709 RM0041 Rev 6

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.

• PROTOCOL=00: Trace Port Mode (synchronous)

• PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Sync Port Size register) of the TPIU:

• 0x1 for 1 pin (default state)

• 0x2 for 2 pins

• 0x8 for 4 pins

25.16.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

• seven bytes of data

• eight bytes of mixed-use bytes consisting of:

– 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1).

– 7 bits (MSB) which can be data or change of source ID trace.

• one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:

– if the corresponding byte was a data, this bit gives bit0 of the data.

– if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.

Table 158. Flexible TRACE pin assignment

DBGMCU_CR
register

Pins
assigned

for:

TRACE IO pin assigned

TRACE
_IOEN

TRACE
_MODE

[1:0]

PB3 /JTDO/
TRACESWO

PE2/
TRACECK

PE3 /
TRACED[0]

PE4 /
TRACED[1]

PE5 /
TRACED[2]

PE6 /
TRACED[3]

0 XX
No Trace

(default state)
Released (1) -

1 00
Asynchronous

Trace
TRACESWO - -

Released
(usable as GPIO)

1 01
Synchronous

Trace 1 bit

Released (1)

TRACECK TRACED[0] - - -

1 10
Synchronous

Trace 2 bit
TRACECK TRACED[0] TRACED[1] - -

1 11
Synchronous

Trace 4 bit
TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]

1. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

RM0041 Rev 6 695/709

RM0041 Debug support (DBG)

698

Note: Refer to the Arm® CoreSight Architecture Specification v1.0 (Arm® IHI 0029B) for further
information

25.16.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

• The Frame Synchronization packet (or Full Word Synchronization packet)

It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.

It is output periodically between frames.

In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.

• The Half-Word Synchronization packet

It consists of the half word: 0x7F_FF (LSB emitted first).

It is output periodically between or within frames.

These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.

25.16.5 Transmission of the synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

• after each TPIU reset release. This reset is synchronously released with the rising
edge of the TRACECLKIN clock. This means that this packet is transmitted when the
TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.

• at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:

– If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.

– If the bit SYNENA of the ITM is set, then the ITM synchronization packets follow
(0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).

25.16.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal
to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

Debug support (DBG) RM0041

696/709 RM0041 Rev 6

25.16.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all STM32F100xx packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.

25.16.8 TRACECLKIN connection inside the STM32F100xx

In the STM32F100xx, this TRACECLKIN input is internally connected to HCLK. This means
that when in asynchronous trace mode, the application is restricted to use to time frames
where the CPU frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the STM32F100xx MCUs is the internal RC oscillator. Its frequency
under reset is different from the one after reset release. This is because the RC calibration
is the default one under system reset and is updated at each system reset release.

Consequently, the trace port analyzer (TPA) must not enable the trace (with the
TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet is issued
with a different bit time than trace packets which are transmitted after reset release.

25.16.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control register (DEMCR) is set. Otherwise, the registers are read as
zero (the output of this bit enables the PCLK of the TPIU).

Table 159. Important TPIU registers

Address Register Description

0xE0040004 Current port size

Allows the trace port size to be selected:

Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4

Only 1 bit must be set. By default, the port size is one bit. (0x00000001)

0xE00400F0 Selected pin protocol

Allows the Trace Port Protocol to be selected:

Bit1:0=
00: Sync Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved

RM0041 Rev 6 697/709

RM0041 Debug support (DBG)

698

25.16.10 Example of configuration

• Set the bit TRCENA in the Debug Exception and Monitor Control register (DEMCR)

• Write the TPIU Current Port Size register to the desired value (default is 0x1 for a 1-bit
port size)

• Write TPIU Formatter and Flush Control register to 0x102 (default value)

• Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for
async NRZ mode (UART like)

• Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os
for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)

• Configure the ITM and write the ITM Stimulus register to output a value

0xE0040304
Formatter and flush
control

Bits 31-9 = always ‘0
Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated
Bits 7-4 = always 0
Bits 3-2 = always 0
Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register
bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled in
continuous mode. In asynchronous mode (Select_Pin_Protocol register
bit1:0 <> 00), this bit can be written to activate or not the formatter.
Bit 0 = always 0

The resulting default value is 0x102

Note: In synchronous mode, because the TRACECTL pin is not mapped
outside the chip, the formatter is always enabled in continuous mode -this
way the formatter inserts some control packets to identify the source of the
trace packets).

0xE0040300
Formatter and flush
status

Not used in Cortex®-M3, always read as 0x00000008

Table 159. Important TPIU registers (continued)

Address Register Description

Debug support (DBG) RM0041

698/709 RM0041 Rev 6

25.17 DBG register map

The following table summarizes the Debug registers.

Table 160. Value DBG register map and reset values

Addr. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
xE

0
0

42
0

0
0

DBGMCU_
IDCODE

REV_ID
Reserved

DEV_ID

Reset value(1) X

0
xE

0
04

2
0

0
4

DBGMCU_
CR Reserved

D
B

G
_

T
IM

1
4

_
S

T
O

P

D
B

G
_

T
IM

1
3

_
S

T
O

P

D
B

G
_

T
IM

1
2

_
S

T
O

P

D
B

G
_

T
IM

1
7

_
S

T
O

P

D
B

G
_

T
IM

1
6

_
S

T
O

P

D
B

G
_

T
IM

1
5

_
S

T
O

P

R
e

se
rv

e
d

D
B

G
_

T
IM

7
_S

T
O

P

D
B

G
_

T
IM

6
_S

T
O

P

D
B

G
_

T
IM

5
_S

T
O

P

R
e

se
rv

e
d

D
B

G
_

I2
C

2
_

S
M

B
U

S
_

T
IM

E
O

U
T

D
B

G
_

I2
C

1
_

S
M

B
U

S
_

T
IM

E
O

U
T

R
e

se
rv

e
d

D
B

G
_

T
IM

4
_S

T
O

P

D
B

G
_

T
IM

3
_S

T
O

P

D
B

G
_

T
IM

2
_S

T
O

P

D
B

G
_

T
IM

1
_S

T
O

P

D
B

G
_

W
W

D
G

_
S

T
O

P

D
B

G
_

IW
D

G
S

T
O

P

T
R

A
C

E
_

M
O

D
E

[1
:0

]

T
R

A
C

E
_

IO
E

N

R
e

se
rv

e
d

D
B

G
_

S
TA

N
D

B
Y

D
B

G
_S

T
O

P

D
B

G
_

S
L

E
E

P

Reset value 0

1. The reset value is product dependent. For more information, refer to Section 25.6.1: MCU device ID code.

RM0041 Rev 6 699/709

RM0041 Device electronic signature

701

26 Device electronic signature

Low-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash
memory density ranges between 256 and 512 Kbytes.

This section applies to all STM32F100xx devices, unless otherwise specified.

The electronic signature is stored in the System memory area in the flash memory module,
and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match its interface to the characteristics of the STM32F100xx microcontroller.

26.1 Memory size registers

26.1.1 Flash size register

Base address: 0x1FFF F7E0

Read only = 0xXXXX where X is factory-programmed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_SIZE: Flash memory size

This field value indicates the flash memory size of the device in Kbytes.
Example: 0x0080 = 128 Kbytes.

Device electronic signature RM0041

700/709 RM0041 Rev 6

26.2 Unique device ID register (96 bits)

The unique device identifier is ideally suited:

• for use as serial numbers

• for use as security keys, to increase the security of code in flash memory while using
and combining this unique ID with software cryptographic primitives and protocols,
before programming the internal flash memory

• to activate secure boot processes

The 96-bit unique device identifier provides a reference number, unique for any device and
in any context. These bits cannot be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

Base address: 0x1FFF F7E8

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x02

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX XXXX where X is factory-programmed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(15:0)

r r r r r r r r r r r r r r r r

Bits 15:0 U_ID(15:0): 15:0 unique ID bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(31:16)

r r r r r r r r r r r r r r r r

Bits 15:0 U_ID(31:16): 31:16 unique ID bits

This field value is also reserved for a future feature.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(63:48)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(47:32)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(63:32): 63:32 unique ID bits

RM0041 Rev 6 701/709

RM0041 Device electronic signature

701

Address offset: 0x08

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(95:80)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(79:64)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(95:64): 95:64 unique ID bits.

Important security notice RM0041

702/1736 RM0041 Rev 6

27 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:

• ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.

• Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.

• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.

• While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.

• All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.

RM0041 Rev 6 703/709

RM0041 Revision history

706

28 Revision history

Table 161. Document revision history

Date Revision Changes

26-Feb-2010 1 Initial release.

04-Jun-2010 2

Corrected description of TIMx_CCER register in Section 12.4.9 on page
272 and Section 13.4.9 on page 334

Updated Section 14.3.5: Input capture mode on page 353

Added method 1 and 2 in Section 22.3.3: I2C master mode

Updated note in POS bit description Section 22.6: I2C registers

12-Oct-2010 3

Updated for high density value line devices

Updated Section 20.5.2: Supported memories and transactions

Added Section 14: General-purpose timers (TIM12/13/14)

Added Section 20: Flexible static memory controller (FSMC)

21-Jul-2011 4

Corrected Figure 2: High density value line system architecture on
page 35

Updated SPI table in Section 7.1.11: GPIO configurations for device
peripherals on page 109

Updated bit descriptions in Section 7.3.1: Clock control register (RCC_CR)
on page 99 and Section 8.3.1: Clock control register (RCC_CR) on
page 132

EXTI:

Updated Figure 18: External interrupt/event controller block diagram

ADC:

Corrected Table 59: External trigger for regular channels for ADC1 and
Table 60: External trigger for injected channels for ADC1 on page 171

TIMERS:

Removed wrong references to 32-bit counter in Section 13.4: TIMx2 to
TIM5 registers on page 321

TIM1&TIM8: Updated example and definition of DBL bits in
Section 12.4.19: TIM1 DMA control register (TIMx_DCR). Added example
related to DMA burst feature and description of DMAB bits in
Section 12.4.20: TIM1 DMA address for full transfer (TIMx_DMAR).

TIM2 to TIM5 and TIM15 to 17: added example and updated definition of
DBL bits in Section 13.4.17: TIMx DMA control register (TIMx_DCR).
Added example related to DMA burst feature and description of DMAB bits
in Section 13.4.18: TIMx DMA address for full transfer (TIMx_DMAR).
Updated definition of DBL bits in Section 13.4.17: TIMx DMA control
register (TIMx_DCR).

In Section 12.3.3: Repetition counter Added paragraph “In Center aligned
mode, for odd values of RCR,”

Modified Figure 167: Update rate examples depending on mode and
TIMx_RCR register settings on page 398.

WWDG

Updated Section 19.2: WWDG main features.

Updated Section 19.3: WWDG functional description to remove paragraph
related to counter reload using EWI interrupt.

Revision history RM0041

704/709 RM0041 Rev 6

21-Jul-2011
4

continued

I2C:

Updated BERR bit description in Section 22.6.6: I2C Status register 1
(I2C_SR1).

Updated Note: in Section 22.6.8: I2C Clock control register (I2C_CCR).

Added note 3 below Figure 235: Transfer sequence diagram for slave
transmitter on page 570. Added note below Figure 236: Transfer sequence
diagram for slave receiver on page 571. Modified Section : Closing slave
communication on page 571. Modified STOPF, ADDR, bit description in
Section 22.6.6: I2C Status register 1 (I2C_SR1) on page 591. Modified
Section 22.6.7: I2C Status register 2 (I2C_SR2).

USART:

Updated Figure 251: Mute mode using address mark detection for
Address =1.SPI:

Modified Slave select (NSS) pin management on page 539 and note on
NSS in Section 21.3.3: Configuring the SPI in master mode

FSMC:

Updated description of DATLAT , DATAST , and ADDSET bits in
SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4).

Updated byte select description in Section 20.5.2: Supported memories
and transactions on page 501

10-Jun-2016 5

Added SCL master clock generation and Note: to Entering Stop mode.

Added Table 88: Minimum and maximum timeout values @24 MHz
(fPCLK1).

Updated Table 74: TIMx Internal trigger connection, Table 79: TIMx
Internal trigger connection, Table 92: Programmable NOR/PSRAM access
parameters, Table 97: NOR flash/PSRAM controller: example of
supported memories and transactions and Table 114: FSMC_BCRx bit
fields.

Updated Figure 5: Power on reset/power down reset waveform, Figure 6:
PVD thresholds, Figure 7: Simplified diagram of the reset circuit,
Figure 40: Advanced-control timer block diagram, Figure 68: Output stage
of capture/compare channel (channel 1 to 3), Figure 78: Clearing TIMx
OCxREF, Figure 121: Clearing TIMx OCxREF, Figure 128: Master/Slave
timer example, Figure 158: TIM16 and TIM17 block diagram, Figure 173:
Output stage of capture/compare channel (channel 1), Figure 200:
Watchdog block diagram, Figure 201: Window watchdog timing diagram,
Figure 202: FSMC block diagram, Figure 217: Asynchronous wait during a
read access, Figure 218: Asynchronous wait during a write access and
Figure 220: Synchronous multiplexed read mode - NOR, PSRAM (CRAM).

Updated caption of Figure 101: Counter timing diagram, Update event and
of Figure 208: Mode2 and mode B read accesses.

Table 161. Document revision history (continued)

Date Revision Changes

RM0041 Rev 6 705/709

RM0041 Revision history

706

10-Jun-2016
5

continued

Updated:

– Introduction

– Section 2.1: System architecture, Section 2.3: Memory map

– Section 25.6.1: MCU device ID code.

– Section 4.4.2: Power control/status register (PWR_CSR),

– Section 6.1.2: Power reset, Section 6.2.8: RTC clock

– Section 7.2.3: Port input data register (GPIOx_IDR) (x=A..G) and
Section 7.2.4: Port output data register (GPIOx_ODR) (x=A..G)

– Section 8.2: External interrupt/event controller (EXTI), Section 8.3.5:
Software interrupt event register (EXTI_SWIER) and Section 8.3.6:
Pending register (EXTI_PR).

– Section 10.11.7: ADC watchdog high threshold register (ADC_HTR) and
Section 10.11.8: ADC watchdog low threshold register (ADC_LTR).

Renumbered former Section 14.3 into Section 14.2.2.

Updated:

– Section 12.3.1: Time-base unit, Section 12.3.2: Counter modes,
Section 12.3.6: Input capture mode, Section 12.3.11: Complementary
outputs and dead-time insertion, Section 12.3.13: Clearing the OCxREF
signal on an external event, Section 12.3.16: Encoder interface mode,
Section 12.3.18: Interfacing with Hall sensors, Section 12.4.3: TIM1
slave mode control register (TIMx_SMCR), Section 12.4.2: TIM1 control
register 2 (TIMx_CR2), Section 12.4.7: TIM1 capture/compare mode
register 1 (TIMx_CCMR1), Section 12.4.12: TIM1 auto-reload register
(TIMx_ARR), Section 13.3.5: Input capture mode, Section 13.3.9: PWM
mode, Section 13.3.11: Clearing the OCxREF signal on an external
event, Section 13.3.12: Encoder interface mode, Section 13.3.15: Timer
synchronization, Section 13.4.2: TIMx control register 2 (TIMx_CR2),
Section 13.4.3: TIMx slave mode control register (TIMx_SMCR),
Section 13.4.7: TIMx capture/compare mode register 1 (TIMx_CCMR1),
Section 14.3.1: Time-base unit, Section 14.3.5: Input capture mode,
Section 14.3.9: PWM mode, Section 14.4.7: TIM capture/compare mode
register 1 (TIMx_CCMR1), Section 14.5.5: TIM13/14 capture/compare
mode register 1 (TIMx_CCMR1), Section 15.2: TIM15 main features,
Section 15.3: TIM16 and TIM17 main features, Section 15.4.1: Time-
base unit, Section 15.4.2: Counter modes, Section 15.4.3: Repetition
counter, Section 15.4.6: Input capture mode, Section 15.4.10: PWM
mode, Section 15.4.11: Complementary outputs and dead-time
insertion, Section 15.5.3: TIM15 slave mode control register
(TIM15_SMCR), Section 15.5.7: TIM15 capture/compare mode register
1 (TIM15_CCMR1), Section 15.5.11: TIM15 auto-reload register
(TIM15_ARR), Section 15.5.15: TIM15 break and dead-time register
(TIM15_BDTR), Section 15.6.6: TIM16&TIM17 capture/compare mode
register 1 (TIMx_CCMR1), Section 15.6.10: TIM16&TIM17 auto-reload
register (TIMx_ARR) and Section 15.6.13: TIM16&TIM17 break and
dead-time register (TIMx_BDTR).

Updated:

– Section 19.4: How to program the watchdog timeout.

Table 161. Document revision history (continued)

Date Revision Changes

Revision history RM0041

706/709 RM0041 Rev 6

10-Jun-2016
5

continued

Updated:

– Mode 1 - SRAM/PSRAM (CRAM), Asynchronous static memories (NOR
flash memory, PSRAM, SRAM), , Mode 2/B - NOR flash, SRAM/NOR-
Flash chip-select timing registers 1..4 (FSMC_BTR1..4), SRAM/NOR-
Flash write timing registers 1..4 (FSMC_BWTR1..4), SRAM/NOR-flash
chip-select control registers 1..4 (FSMC_BCR1..4), Section 20.5.4: NOR
flash/PSRAM controller asynchronous transactions and Section 20.5.6:
NOR/PSRAM control registers.

Replaced M/SL with MSL throughout Section 22: Inter-integrated circuit
(I2C) interface, and updated Section 22.6.1: I2C Control register 1
(I2C_CR1), Section 22.6.2: I2C Control register 2 (I2C_CR2) and
Section 22.6.9: I2C TRISE register (I2C_TRISE).

Replaced nCTS with CTS, nRTS with RTS and SCLK with CK throughout
Section 27: Universal synchronous asynchronous receiver transmitter
(USART).

Updated:

– Section 27.3.8: LIN (local interconnection network) mode, Selecting the
proper oversampling method, How to derive USARTDIV from
USART_BRR register values when OVER8=0 and How to derive
USARTDIV from USART_BRR register values when OVER8=1 and
Section 27.6.6: Control register 3 (USART_CR3).

12-Dec-2022 6

Updated Introduction, Section 4.4.1: Power control register (PWR_CR),
Section 5.2: BKP main features, Section 5.4: BKP registers,
Section 12.3.21: Debug mode, Section 12.4.7: TIM1 capture/compare
mode register 1 (TIMx_CCMR1), Section 12.4.14: TIM1 capture/compare
register 1 (TIMx_CCR1), Section 12.4.17: TIM1 capture/compare register
4 (TIMx_CCR4), Section 12.4.20: TIM1 DMA address for full transfer
(TIMx_DMAR), Section 13.4.7: TIMx capture/compare mode register 1
(TIMx_CCMR1), sections 13.4.13 to 13.4.16, Section 14.4.7: TIM
capture/compare mode register 1 (TIMx_CCMR1), sections 14.4.11 to
14.4.13, Section 14.5.9: TIM13/14 auto-reload register (TIMx_ARR),
Section 14.5.10: TIM13/14 capture/compare register 1 (TIMx_CCR1),
Section 15.5.5: TIM15 status register (TIM15_SR), Section 15.6.12:
TIM16&TIM17 capture/compare register 1 (TIMx_CCR1), and
Section 19.4: How to program the watchdog timeout.

Added Section 1.4: General information and Section 27: Important security
notice.

Updated Table 14: BKP register map and reset values and Table 69: TIM1
register map and reset values.

Updated Figure 6: PVD thresholds, Figure 40: Advanced-control timer
block diagram, Figure 134: General-purpose timer block diagram (TIM12),
and Figure 259: Parity error detection using the 1.5 stop bits.

Minor text edits across the whole document.

Table 161. Document revision history (continued)

Date Revision Changes

Index RM0041

707/709 RM0041 Rev 6

Index

A
ADC_CR1 .176
ADC_CR2 .177
ADC_DR .187
ADC_HTR .182
ADC_JDRx .187
ADC_JOFRx .181
ADC_JSQR .186
ADC_LTR .182
ADC_SMPR1 .180
ADC_SMPR2 .181
ADC_SQR1 .183
ADC_SQR2 .184
ADC_SQR3 .185
ADC_SR .175
AFIO_EVCR .123
AFIO_EXTICR1 .126
AFIO_EXTICR2 .126
AFIO_EXTICR3 .127
AFIO_EXTICR4 .127
AFIO_MAPR .124
AFIO_MAPR2 .128

B
BKP_CR .67
BKP_CSR .67
BKP_DRx .66
BKP_RTCCR .66

C
CEC_CFGR .663
CEC_CSR .666
CEC_ESR .665
CEC_OAR .664
CEC_PRES .664
CEC_RXD .667
CEC_TXD .667
CRC_DR .48
CRC_IDR .48

D
DAC_CR .202
DAC_DHR12L1 .206
DAC_DHR12L2 .207
DAC_DHR12LD .208

DAC_DHR12R1 . 205
DAC_DHR12R2 . 207
DAC_DHR12RD . 208
DAC_DHR8R1 . 206
DAC_DHR8R2 . 207
DAC_DHR8RD . 209
DAC_DOR1 . 209
DAC_DOR2 . 209
DAC_SR . 210
DAC_SWTRIGR . 205
DBGMCU_CR . 689
DBGMCU_IDCODE 677
DMA_CCRx . 156
DMA_CMARx . 158
DMA_CNDTRx . 157
DMA_CPARx . 158
DMA_IFCR . 155
DMA_ISR . 154

E
EXTI_EMR . 140
EXTI_FTSR . 141
EXTI_IMR . 140
EXTI_PR . 142
EXTI_RTSR . 141
EXTI_SWIER . 142

F
FSMC_BCR1..4 . 526
FSMC_BTR1..4 . 529
FSMC_BWTR1..4 . 532

G
GPIOx_BRR . 116
GPIOx_BSRR . 115
GPIOx_CRH . 114
GPIOx_CRL . 113
GPIOx_IDR . 114
GPIOx_LCKR . 116
GPIOx_ODR . 115

I
I2C_CCR . 595
I2C_CR1 . 586
I2C_CR2 . 588

RM0041 Index

RM0041 Rev 6 708/709

I2C_DR .591
I2C_OAR1 .590
I2C_OAR2 .590
I2C_SR1 .591
I2C_SR2 .594
I2C_TRISE .596
IWDG_KR .483
IWDG_PR .483
IWDG_RLR .484
IWDG_SR .484

P
PWR_CR .60
PWR_CSR .62

R
RCC_AHBENR .90
RCC_APB1ENR .94
RCC_APB1RSTR .88
RCC_APB2ENR .92
RCC_APB2RSTR .86
RCC_BDCR .97
RCC_CFGR .82
RCC_CFGR2 .100
RCC_CIR .84
RCC_CR .80
RCC_CSR .98
RTC_ALRH .479
RTC_ALRL .479
RTC_CNTH .478
RTC_CNTL .478
RTC_CRH .474
RTC_CRL .475
RTC_DIVH .477
RTC_DIVL .477
RTC_PRLH .476
RTC_PRLL .477

S
SPI_CR1 .559
SPI_CR2 .560
SPI_CRCPR .563
SPI_DR .562
SPI_RXCRCR .563
SPI_SR .561
SPI_TXCRCR .564

T
TIM15_ARR .429

TIM15_BDTR . 431
TIM15_CCER . 426
TIM15_CCMR1 . 423
TIM15_CCR1 . 430
TIM15_CCR2 . 431
TIM15_CNT . 429
TIM15_CR1 . 416
TIM15_CR2 . 417
TIM15_DCR . 433
TIM15_DIER . 420
TIM15_DMAR . 434
TIM15_EGR . 422
TIM15_PSC . 429
TIM15_RCR . 430
TIM15_SMCR . 418
TIM15_SR . 421
TIMx_ARR336, 375, 385, 467
TIMx_BDTR . 278, 450
TIMx_CCER 272, 334, 374, 384, 445
TIMx_CCMR1 268, 330, 371, 381, 443
TIMx_CCMR2 . 270, 333
TIMx_CCR1276, 336, 376, 386, 449
TIMx_CCR2 277, 337, 376
TIMx_CCR3 . 277, 337
TIMx_CCR4 . 278, 337
TIMx_CNT274, 335, 375, 385, 448, 466
TIMx_CR1257, 321, 364, 379, 437, 463
TIMx_CR2258, 323, 365, 438, 465
TIMx_DCR 280, 338, 451
TIMx_DIER 263, 326, 367, 380, 440, 465
TIMx_DMAR 281, 338, 452
TIMx_EGR266, 329, 370, 381, 442, 466
TIMx_PSC274, 335, 375, 385, 448, 467
TIMx_RCR . 276, 449
TIMx_SMCR 261, 324, 366
TIMx_SR265, 327, 369, 380, 441, 466

U
USART_BRR . 639
USART_CR1 . 639
USART_CR2 . 642
USART_CR3 . 643
USART_DR . 639
USART_GTPR . 645
USART_SR . 636

W
WWDG_CFR . 492
WWDG_CR . 491
WWDG_SR . 492

RM0041 Rev 6 709/709

RM0041

709

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

	1 Documentation conventions
	1.1 List of abbreviations for registers
	1.2 Glossary
	1.3 Peripheral availability
	1.4 General information

	2 Memory and bus architecture
	2.1 System architecture
	Figure 1. Low and medium density value line system architecture
	Figure 2. High density value line system architecture

	2.2 Memory organization
	2.3 Memory map
	Table 1. Low and medium-density device register boundary addresses
	Table 2. High-density device register boundary addresses
	2.3.1 Embedded SRAM
	2.3.2 Bit banding
	2.3.3 Embedded flash memory
	Table 3. Flash module organization (low-density value line devices)
	Table 4. Flash module organization (medium-density value line devices)
	Table 5. Flash module organization (high-density value line devices)

	2.4 Boot configuration
	Table 6. Boot modes

	3 CRC calculation unit
	3.1 CRC introduction
	3.2 CRC main features
	Figure 3. CRC calculation unit block diagram

	3.3 CRC functional description
	3.4 CRC registers
	3.4.1 Data register (CRC_DR)
	3.4.2 Independent data register (CRC_IDR)
	3.4.3 Control register (CRC_CR)
	3.4.4 CRC register map
	Table 7. CRC calculation unit register map and reset values

	4 Power control (PWR)
	4.1 Power supplies
	Figure 4. Power supply overview
	4.1.1 Independent A/D and D/A converter supply and reference voltage
	4.1.2 Battery backup domain
	4.1.3 Voltage regulator

	4.2 Power supply supervisor
	4.2.1 Power on reset (POR)/power down reset (PDR)
	Figure 5. Power on reset/power down reset waveform

	4.2.2 Programmable voltage detector (PVD)
	Figure 6. PVD thresholds

	4.3 Low-power modes
	Table 8. Low-power mode summary
	4.3.1 Slowing down system clocks
	4.3.2 Peripheral clock gating
	4.3.3 Sleep mode
	Table 9. Sleep-now
	Table 10. Sleep-on-exit

	4.3.4 Stop mode
	Table 11. Stop mode

	4.3.5 Standby mode
	Table 12. Standby mode

	4.3.6 Auto-wakeup (AWU) from low-power mode

	4.4 Power control registers
	4.4.1 Power control register (PWR_CR)
	4.4.2 Power control/status register (PWR_CSR)
	4.4.3 PWR register map
	Table 13. PWR register map and reset values

	5 Backup registers (BKP)
	5.1 BKP introduction
	5.2 BKP main features
	5.3 BKP functional description
	5.3.1 Tamper detection
	5.3.2 RTC calibration

	5.4 BKP registers
	5.4.1 Backup data register x (BKP_DRx) (x = 1 ..20)
	5.4.2 RTC clock calibration register (BKP_RTCCR)
	5.4.3 Backup control register (BKP_CR)
	5.4.4 Backup control/status register (BKP_CSR)
	5.4.5 BKP register map
	Table 14. BKP register map and reset values

	6 Reset and clock control (RCC)
	6.1 Reset
	6.1.1 System reset
	6.1.2 Power reset
	Figure 7. Simplified diagram of the reset circuit

	6.1.3 Backup domain reset

	6.2 Clocks
	Figure 8. STM32F100xx clock tree (low and medium-density devices)
	Figure 9. STM32F100xx clock tree (high-density devices)
	6.2.1 HSE clock
	Figure 10. HSE/ LSE clock sources

	6.2.2 HSI clock
	6.2.3 PLL
	6.2.4 LSE clock
	6.2.5 LSI clock
	6.2.6 System clock (SYSCLK) selection
	6.2.7 Clock security system (CSS)
	6.2.8 RTC clock
	6.2.9 Watchdog clock
	6.2.10 Clock-out capability

	6.3 RCC registers
	6.3.1 Clock control register (RCC_CR)
	6.3.2 Clock configuration register (RCC_CFGR)
	6.3.3 Clock interrupt register (RCC_CIR)
	6.3.4 APB2 peripheral reset register (RCC_APB2RSTR)
	6.3.5 APB1 peripheral reset register (RCC_APB1RSTR)
	6.3.6 AHB peripheral clock enable register (RCC_AHBENR)
	6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)
	6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR)
	6.3.9 Backup domain control register (RCC_BDCR)
	6.3.10 Control/status register (RCC_CSR)
	6.3.11 Clock configuration register2 (RCC_CFGR2)
	6.3.12 RCC register map
	Table 15. RCC register map and reset values

	7 General-purpose and alternate-function I/Os (GPIOs and AFIOs)
	7.1 GPIO functional description
	Figure 11. Basic structure of a standard I/O port bit
	Figure 12. Basic structure of a 5-Volt tolerant I/O port bit
	Table 16. Port bit configuration table
	Table 17. Output MODE bits
	7.1.1 General-purpose I/O (GPIO)
	7.1.2 Atomic bit set or reset
	7.1.3 External interrupt/wakeup lines
	7.1.4 Alternate functions (AF)
	7.1.5 Software remapping of I/O alternate functions
	7.1.6 GPIO locking mechanism
	7.1.7 Input configuration
	Figure 13. Input floating/pull up/pull down configurations

	7.1.8 Output configuration
	Figure 14. Output configuration

	7.1.9 Alternate function configuration
	Figure 15. Alternate function configuration

	7.1.10 Analog configuration
	Figure 16. High impedance-analog configuration

	7.1.11 GPIO configurations for device peripherals
	Table 18. Advanced timer TIM1
	Table 19. General-purpose timers TIM2/3/4/5
	Table 20. General-purpose timers TIM15/16/17
	Table 21. General-purpose timers TIM12/13/14
	Table 22. USARTs
	Table 23. SPI
	Table 24. CEC
	Table 25. I2C
	Figure 17. ADC / DAC
	Table 26. FSMC
	Table 27. Other IOs

	7.2 GPIO registers
	7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)
	7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)
	7.2.3 Port input data register (GPIOx_IDR) (x=A..G)
	7.2.4 Port output data register (GPIOx_ODR) (x=A..G)
	7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)
	7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)
	7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

	7.3 Alternate function I/O and debug configuration (AFIO)
	7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15
	7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1
	7.3.3 JTAG/SWD alternate function remapping
	Table 28. Debug interface signals
	Table 29. Debug port mapping

	7.3.4 Timer alternate function remapping
	Table 30. TIM5 alternate function remapping
	Table 31. TIM12 remapping
	Table 32. TIM13 remapping
	Table 33. TIM14 remapping
	Table 34. TIM4 alternate function remapping
	Table 35. TIM3 alternate function remapping
	Table 36. TIM2 alternate function remapping
	Table 37. TIM1 alternate function remapping
	Table 38. TIM1 DMA remapping
	Table 39. TIM15 remapping
	Table 40. TIM16 remapping
	Table 41. TIM17 remapping

	7.3.5 USART alternate function remapping
	Table 42. USART3 remapping
	Table 43. USART2 remapping
	Table 44. USART1 remapping

	7.3.6 I2C1 alternate function remapping
	Table 45. I2C1 remapping

	7.3.7 SPI1 alternate function remapping
	Table 46. SPI1 remapping

	7.3.8 CEC remap
	Table 47. CEC remapping

	7.4 AFIO registers
	7.4.1 Event control register (AFIO_EVCR)
	7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR)
	7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1)
	7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2)
	7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3)
	7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4)
	7.4.7 AF remap and debug I/O configuration register (AFIO_MAPR2)

	7.5 GPIO and AFIO register maps
	Table 48. GPIO register map and reset values
	Table 49. AFIO register map and reset values

	8 Interrupts and events
	8.1 Nested vectored interrupt controller (NVIC)
	8.1.1 SysTick calibration value register
	8.1.2 Interrupt and exception vectors
	Table 50. Vector table for STM32F100xx devices

	8.2 External interrupt/event controller (EXTI)
	8.2.1 Main features
	8.2.2 Block diagram
	Figure 18. External interrupt/event controller block diagram

	8.2.3 Wakeup event management
	8.2.4 Functional description
	8.2.5 External interrupt/event line mapping
	Figure 19. External interrupt/event GPIO mapping

	8.3 EXTI registers
	8.3.1 Interrupt mask register (EXTI_IMR)
	8.3.2 Event mask register (EXTI_EMR)
	8.3.3 Rising trigger selection register (EXTI_RTSR)
	8.3.4 Falling trigger selection register (EXTI_FTSR)
	8.3.5 Software interrupt event register (EXTI_SWIER)
	8.3.6 Pending register (EXTI_PR)
	8.3.7 EXTI register map
	Table 51. External interrupt/event controller register map and reset values

	9 Direct memory access controller (DMA)
	9.1 DMA introduction
	9.2 DMA main features
	Figure 20. DMA block diagram in low and medium- density Cat.1 and Cat.2 STM32F100xx devices
	Figure 21. DMA block diagram in high-density Cat.4 and Cat.5 STM32F100xx devices

	9.3 DMA functional description
	9.3.1 DMA transactions
	9.3.2 Arbiter
	9.3.3 DMA channels
	9.3.4 Programmable data width, data alignment and endians
	Table 52. Programmable data width and endian behavior (when bits PINC = MINC = 1)

	9.3.5 Error management
	9.3.6 Interrupts
	Table 53. DMA interrupt requests

	9.3.7 DMA request mapping
	Figure 22. DMA1 request mapping
	Table 54. Summary of DMA1 requests for each channel
	Figure 23. DMA2 request mapping
	Table 55. Summary of DMA2 requests for each channel

	9.4 DMA registers
	9.4.1 DMA interrupt status register (DMA_ISR)
	9.4.2 DMA interrupt flag clear register (DMA_IFCR)
	9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7, where x = channel number)
	9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7, where x = channel number)
	9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7, where x = channel number)
	9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7, where x = channel number)
	9.4.7 DMA register map
	Table 56. DMA register map and reset values

	10 Analog-to-digital converter (ADC)
	10.1 ADC introduction
	10.2 ADC main features
	10.3 ADC functional description
	Figure 24. Single ADC block diagram
	Table 57. ADC pins
	10.3.1 ADC on-off control
	10.3.2 ADC clock
	10.3.3 Channel selection
	10.3.4 Single conversion mode
	10.3.5 Continuous conversion mode
	10.3.6 Timing diagram
	Figure 25. Timing diagram

	10.3.7 Analog watchdog
	Figure 26. Analog watchdog guarded area
	Table 58. Analog watchdog channel selection

	10.3.8 Scan mode
	10.3.9 Injected channel management
	Figure 27. Injected conversion latency

	10.3.10 Discontinuous mode

	10.4 Calibration
	Figure 28. Calibration timing diagram

	10.5 Data alignment
	Figure 29. Right alignment of data
	Figure 30. Left alignment of data

	10.6 Channel-by-channel programmable sample time
	10.7 Conversion on external trigger
	Table 59. External trigger for regular channels for ADC1
	Table 60. External trigger for injected channels for ADC1

	10.8 DMA request
	10.9 Temperature sensor
	Figure 31. Temperature sensor and VREFINT channel block diagram

	10.10 ADC interrupts
	Table 61. ADC interrupts

	10.11 ADC registers
	10.11.1 ADC status register (ADC_SR)
	10.11.2 ADC control register 1 (ADC_CR1)
	10.11.3 ADC control register 2 (ADC_CR2)
	10.11.4 ADC sample time register 1 (ADC_SMPR1)
	10.11.5 ADC sample time register 2 (ADC_SMPR2)
	10.11.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)
	10.11.7 ADC watchdog high threshold register (ADC_HTR)
	10.11.8 ADC watchdog low threshold register (ADC_LTR)
	10.11.9 ADC regular sequence register 1 (ADC_SQR1)
	10.11.10 ADC regular sequence register 2 (ADC_SQR2)
	10.11.11 ADC regular sequence register 3 (ADC_SQR3)
	10.11.12 ADC injected sequence register (ADC_JSQR)
	10.11.13 ADC injected data register x (ADC_JDRx) (x= 1..4)
	10.11.14 ADC regular data register (ADC_DR)
	10.11.15 ADC register map
	Table 62. ADC register map and reset values

	11 Digital-to-analog converter (DAC)
	11.1 DAC introduction
	11.2 DAC main features
	Figure 32. DAC channel block diagram
	Table 63. DAC pins

	11.3 DAC functional description
	11.3.1 DAC channel enable
	11.3.2 DAC output buffer enable
	11.3.3 DAC data format
	Figure 33. Data registers in single DAC channel mode
	Figure 34. Data registers in dual DAC channel mode

	11.3.4 DAC conversion
	Figure 35. Timing diagram for conversion with trigger disabled TEN = 0

	11.3.5 DAC output voltage
	11.3.6 DAC trigger selection
	Table 64. External triggers

	11.3.7 DMA request
	11.3.8 Noise generation
	Figure 36. DAC LFSR register calculation algorithm
	Figure 37. DAC conversion (SW trigger enabled) with LFSR wave generation

	11.3.9 Triangle-wave generation
	Figure 38. DAC triangle wave generation
	Figure 39. DAC conversion (SW trigger enabled) with triangle wave generation

	11.4 Dual DAC channel conversion
	11.4.1 Independent trigger without wave generation
	11.4.2 Independent trigger with single LFSR generation
	11.4.3 Independent trigger with different LFSR generation
	11.4.4 Independent trigger with single triangle generation
	11.4.5 Independent trigger with different triangle generation
	11.4.6 Simultaneous software start
	11.4.7 Simultaneous trigger without wave generation
	11.4.8 Simultaneous trigger with single LFSR generation
	11.4.9 Simultaneous trigger with different LFSR generation
	11.4.10 Simultaneous trigger with single triangle generation
	11.4.11 Simultaneous trigger with different triangle generation

	11.5 DAC registers
	11.5.1 DAC control register (DAC_CR)
	11.5.2 DAC software trigger register (DAC_SWTRIGR)
	11.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	11.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1)
	11.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1)
	11.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2)
	11.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2)
	11.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2)
	11.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD)
	11.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD)
	11.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD)
	11.5.12 DAC channel1 data output register (DAC_DOR1)
	11.5.13 DAC channel2 data output register (DAC_DOR2)
	11.5.14 DAC status register (DAC_SR)
	11.5.15 DAC register map
	Table 65. DAC register map

	12 Advanced-control timer (TIM1)
	12.1 TIM1 introduction
	12.2 TIM1 main features
	Figure 40. Advanced-control timer block diagram

	12.3 TIM1 functional description
	12.3.1 Time-base unit
	Figure 41. Counter timing diagram with prescaler division change from 1 to 2
	Figure 42. Counter timing diagram with prescaler division change from 1 to 4

	12.3.2 Counter modes
	Figure 43. Counter timing diagram, internal clock divided by 1
	Figure 44. Counter timing diagram, internal clock divided by 2
	Figure 45. Counter timing diagram, internal clock divided by 4
	Figure 46. Counter timing diagram, internal clock divided by N
	Figure 47. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 48. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)
	Figure 49. Counter timing diagram, internal clock divided by 1
	Figure 50. Counter timing diagram, internal clock divided by 2
	Figure 51. Counter timing diagram, internal clock divided by 4
	Figure 52. Counter timing diagram, internal clock divided by N
	Figure 53. Counter timing diagram, update event when repetition counter is not used
	Figure 54. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6
	Figure 55. Counter timing diagram, internal clock divided by 2
	Figure 56. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
	Figure 57. Counter timing diagram, internal clock divided by N
	Figure 58. Counter timing diagram, update event with ARPE=1 (counter underflow)
	Figure 59. Counter timing diagram, Update event with ARPE=1 (counter overflow)

	12.3.3 Repetition counter
	Figure 60. Update rate examples depending on mode and TIMx_RCR register settings

	12.3.4 Clock selection
	Figure 61. Control circuit in normal mode, internal clock divided by 1
	Figure 62. TI2 external clock connection example
	Figure 63. Control circuit in external clock mode 1
	Figure 64. External trigger input block
	Figure 65. Control circuit in external clock mode 2

	12.3.5 Capture/compare channels
	Figure 66. Capture/compare channel (example: channel 1 input stage)
	Figure 67. Capture/compare channel 1 main circuit
	Figure 68. Output stage of capture/compare channel (channel 1 to 3)
	Figure 69. Output stage of capture/compare channel (channel 4)

	12.3.6 Input capture mode
	12.3.7 PWM input mode
	Figure 70. PWM input mode timing

	12.3.8 Forced output mode
	12.3.9 Output compare mode
	Figure 71. Output compare mode, toggle on OC1.

	12.3.10 PWM mode
	Figure 72. Edge-aligned PWM waveforms (ARR=8)
	Figure 73. Center-aligned PWM waveforms (ARR=8)

	12.3.11 Complementary outputs and dead-time insertion
	Figure 74. Complementary output with dead-time insertion.
	Figure 75. Dead-time waveforms with delay greater than the negative pulse.
	Figure 76. Dead-time waveforms with delay greater than the positive pulse.

	12.3.12 Using the break function
	Figure 77. Output behavior in response to a break.

	12.3.13 Clearing the OCxREF signal on an external event
	Figure 78. Clearing TIMx OCxREF

	12.3.14 6-step PWM generation
	Figure 79. 6-step generation, COM example (OSSR=1)

	12.3.15 One-pulse mode
	Figure 80. Example of one pulse mode.

	12.3.16 Encoder interface mode
	Table 66. Counting direction versus encoder signals
	Figure 81. Example of counter operation in encoder interface mode.
	Figure 82. Example of encoder interface mode with TI1FP1 polarity inverted.

	12.3.17 Timer input XOR function
	12.3.18 Interfacing with Hall sensors
	Figure 83. Example of Hall sensor interface

	12.3.19 TIMx and external trigger synchronization
	Figure 84. Control circuit in reset mode
	Figure 85. Control circuit in gated mode
	Figure 86. Control circuit in trigger mode
	Figure 87. Control circuit in external clock mode 2 + trigger mode

	12.3.20 Timer synchronization
	12.3.21 Debug mode

	12.4 TIM1 registers
	12.4.1 TIM1 control register 1 (TIMx_CR1)
	12.4.2 TIM1 control register 2 (TIMx_CR2)
	12.4.3 TIM1 slave mode control register (TIMx_SMCR)
	Table 67. TIMx Internal trigger connection

	12.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER)
	12.4.5 TIM1 status register (TIMx_SR)
	12.4.6 TIM1 event generation register (TIMx_EGR)
	12.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1)
	12.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2)
	12.4.9 TIM1 capture/compare enable register (TIMx_CCER)
	Table 68. Output control bits for complementary OCx and OCxN channels with break feature

	12.4.10 TIM1 counter (TIMx_CNT)
	12.4.11 TIM1 prescaler (TIMx_PSC)
	12.4.12 TIM1 auto-reload register (TIMx_ARR)
	12.4.13 TIM1 repetition counter register (TIMx_RCR)
	12.4.14 TIM1 capture/compare register 1 (TIMx_CCR1)
	12.4.15 TIM1 capture/compare register 2 (TIMx_CCR2)
	12.4.16 TIM1 capture/compare register 3 (TIMx_CCR3)
	12.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)
	12.4.18 TIM1 break and dead-time register (TIMx_BDTR)
	12.4.19 TIM1 DMA control register (TIMx_DCR)
	12.4.20 TIM1 DMA address for full transfer (TIMx_DMAR)
	12.4.21 TIM1 register map
	Table 69. TIM1 register map and reset values

	13 General-purpose timers (TIM2 to TIM5)
	13.1 TIM2 to TIM5 introduction
	13.2 TIM2 to TIM5 main features
	Figure 88. General-purpose timer block diagram

	13.3 TIM2 to TIM5 functional description
	13.3.1 Time-base unit
	Figure 89. Counter timing diagram with prescaler division change from 1 to 2
	Figure 90. Counter timing diagram with prescaler division change from 1 to 4

	13.3.2 Counter modes
	Figure 91. Counter timing diagram, internal clock divided by 1
	Figure 92. Counter timing diagram, internal clock divided by 2
	Figure 93. Counter timing diagram, internal clock divided by 4
	Figure 94. Counter timing diagram, internal clock divided by N
	Figure 95. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 96. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded)
	Figure 97. Counter timing diagram, internal clock divided by 1
	Figure 98. Counter timing diagram, internal clock divided by 2
	Figure 99. Counter timing diagram, internal clock divided by 4
	Figure 100. Counter timing diagram, internal clock divided by N
	Figure 101. Counter timing diagram, Update event
	Figure 102. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6
	Figure 103. Counter timing diagram, internal clock divided by 2
	Figure 104. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
	Figure 105. Counter timing diagram, internal clock divided by N
	Figure 106. Counter timing diagram, Update event with ARPE=1 (counter underflow)
	Figure 107. Counter timing diagram, Update event with ARPE=1 (counter overflow)

	13.3.3 Clock selection
	Figure 108. Control circuit in normal mode, internal clock divided by 1
	Figure 109. TI2 external clock connection example
	Figure 110. Control circuit in external clock mode 1
	Figure 111. External trigger input block
	Figure 112. Control circuit in external clock mode 2

	13.3.4 Capture/compare channels
	Figure 113. Capture/compare channel (example: channel 1 input stage)
	Figure 114. Capture/compare channel 1 main circuit
	Figure 115. Output stage of capture/compare channel (channel 1)

	13.3.5 Input capture mode
	13.3.6 PWM input mode
	Figure 116. PWM input mode timing

	13.3.7 Forced output mode
	13.3.8 Output compare mode
	Figure 117. Output compare mode, toggle on OC1

	13.3.9 PWM mode
	Figure 118. Edge-aligned PWM waveforms (ARR=8)
	Figure 119. Center-aligned PWM waveforms (ARR=8)

	13.3.10 One-pulse mode
	Figure 120. Example of one-pulse mode

	13.3.11 Clearing the OCxREF signal on an external event
	Figure 121. Clearing TIMx OCxREF

	13.3.12 Encoder interface mode
	Table 70. Counting direction versus encoder signals
	Figure 122. Example of counter operation in encoder interface mode
	Figure 123. Example of encoder interface mode with TI1FP1 polarity inverted

	13.3.13 Timer input XOR function
	13.3.14 Timers and external trigger synchronization
	Figure 124. Control circuit in reset mode
	Figure 125. Control circuit in gated mode
	Figure 126. Control circuit in trigger mode
	Figure 127. Control circuit in external clock mode 2 + trigger mode

	13.3.15 Timer synchronization
	Figure 128. Master/Slave timer example
	Figure 129. Gating TIM2 with OC1REF of TIM3
	Figure 130. Gating TIM2 with Enable of TIM3
	Figure 131. Triggering TIM2 with update of TIM3
	Figure 132. Triggering TIM2 with Enable of TIM3
	Figure 133. Triggering TIM3 and TIM2 with TIM3 TI1 input

	13.3.16 Debug mode

	13.4 TIMx2 to TIM5 registers
	13.4.1 TIMx control register 1 (TIMx_CR1)
	13.4.2 TIMx control register 2 (TIMx_CR2)
	13.4.3 TIMx slave mode control register (TIMx_SMCR)
	Table 71. TIMx internal trigger connection

	13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)
	13.4.5 TIMx status register (TIMx_SR)
	13.4.6 TIMx event generation register (TIMx_EGR)
	13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)
	13.4.9 TIMx capture/compare enable register (TIMx_CCER)
	Table 72. Output control bit for standard OCx channels

	13.4.10 TIMx counter (TIMx_CNT)
	13.4.11 TIMx prescaler (TIMx_PSC)
	13.4.12 TIMx auto-reload register (TIMx_ARR)
	13.4.13 TIMx capture/compare register 1 (TIMx_CCR1)
	13.4.14 TIMx capture/compare register 2 (TIMx_CCR2)
	13.4.15 TIMx capture/compare register 3 (TIMx_CCR3)
	13.4.16 TIMx capture/compare register 4 (TIMx_CCR4)
	13.4.17 TIMx DMA control register (TIMx_DCR)
	13.4.18 TIMx DMA address for full transfer (TIMx_DMAR)
	13.4.19 TIMx register map
	Table 73. TIMx register map and reset values

	14 General-purpose timers (TIM12/13/14)
	14.1 TIM12/13/14 introduction
	14.2 TIM12/13/14 main features
	14.2.1 TIM12 main features
	Figure 134. General-purpose timer block diagram (TIM12)

	14.2.2 TIM13/TIM14 main features
	Figure 135. General-purpose timer block diagram (TIM13/14)

	14.3 TIM12/13/14 functional description
	14.3.1 Time-base unit
	Figure 136. Counter timing diagram with prescaler division change from 1 to 2
	Figure 137. Counter timing diagram with prescaler division change from 1 to 4

	14.3.2 Counter modes
	Figure 138. Counter timing diagram, internal clock divided by 1
	Figure 139. Counter timing diagram, internal clock divided by 2
	Figure 140. Counter timing diagram, internal clock divided by 4
	Figure 141. Counter timing diagram, internal clock divided by N
	Figure 142. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 143. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	14.3.3 Clock selection
	Figure 144. Control circuit in normal mode, internal clock divided by 1
	Figure 145. TI2 external clock connection example
	Figure 146. Control circuit in external clock mode 1

	14.3.4 Capture/compare channels
	Figure 147. Capture/compare channel (example: channel 1 input stage)
	Figure 148. Capture/compare channel 1 main circuit
	Figure 149. Output stage of capture/compare channel (channel 1)

	14.3.5 Input capture mode
	14.3.6 PWM input mode (only for TIM12)
	Figure 150. PWM input mode timing

	14.3.7 Forced output mode
	14.3.8 Output compare mode
	Figure 151. Output compare mode, toggle on OC1.

	14.3.9 PWM mode
	Figure 152. Edge-aligned PWM waveforms (ARR=8)

	14.3.10 One-pulse mode
	Figure 153. Example of one pulse mode.

	14.3.11 TIM12 external trigger synchronization
	Figure 154. Control circuit in reset mode
	Figure 155. Control circuit in gated mode
	Figure 156. Control circuit in trigger mode

	14.3.12 Timer synchronization (TIM12)
	14.3.13 Debug mode

	14.4 TIM12 registers
	14.4.1 TIM12 control register 1 (TIMx_CR1)
	14.4.2 TIM12 control register 2 (TIMx_CR2)
	14.4.3 TIM12 slave mode control register (TIMx_SMCR)
	Table 74. TIMx Internal trigger connection

	14.4.4 TIM12 Interrupt enable register (TIMx_DIER)
	14.4.5 TIM12 status register (TIMx_SR)
	14.4.6 TIM event generation register (TIMx_EGR)
	14.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1)
	14.4.8 TIM12 capture/compare enable register (TIMx_CCER)
	Table 75. Output control bit for standard OCx channels

	14.4.9 TIM12 counter (TIMx_CNT)
	14.4.10 TIM12 prescaler (TIMx_PSC)
	14.4.11 TIM12 auto-reload register (TIMx_ARR)
	14.4.12 TIM12 capture/compare register 1 (TIMx_CCR1)
	14.4.13 TIM12 capture/compare register 2 (TIMx_CCR2)
	14.4.14 TIM12 register map
	Table 76. TIM12 register map and reset values

	14.5 TIM13/14 registers
	14.5.1 TIM13/14 control register 1 (TIMx_CR1)
	14.5.2 TIM10/11/13/14 Interrupt enable register (TIMx_DIER)
	14.5.3 TIM13/14 status register (TIMx_SR)
	14.5.4 TIM13/14 event generation register (TIMx_EGR)
	14.5.5 TIM13/14 capture/compare mode register 1 (TIMx_CCMR1)
	14.5.6 TIM13/14 capture/compare enable register (TIMx_CCER)
	Table 77. Output control bit for standard OCx channels

	14.5.7 TIM13/14 counter (TIMx_CNT)
	14.5.8 TIM13/14 prescaler (TIMx_PSC)
	14.5.9 TIM13/14 auto-reload register (TIMx_ARR)
	14.5.10 TIM13/14 capture/compare register 1 (TIMx_CCR1)
	14.5.11 TIM13/14 register map
	Table 78. TIM13/14 register map and reset values

	15 General-purpose timers (TIM15/16/17)
	15.1 TIM15/16/17 introduction
	15.2 TIM15 main features
	15.3 TIM16 and TIM17 main features
	Figure 157. TIM15 block diagram
	Figure 158. TIM16 and TIM17 block diagram

	15.4 TIM15/16/17 functional description
	15.4.1 Time-base unit
	Figure 159. Counter timing diagram with prescaler division change from 1 to 2
	Figure 160. Counter timing diagram with prescaler division change from 1 to 4

	15.4.2 Counter modes
	Figure 161. Counter timing diagram, internal clock divided by 1
	Figure 162. Counter timing diagram, internal clock divided by 2
	Figure 163. Counter timing diagram, internal clock divided by 4
	Figure 164. Counter timing diagram, internal clock divided by N
	Figure 165. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 166. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	15.4.3 Repetition counter
	Figure 167. Update rate examples depending on mode and TIMx_RCR register settings

	15.4.4 Clock selection
	Figure 168. Control circuit in normal mode, internal clock divided by 1
	Figure 169. TI2 external clock connection example
	Figure 170. Control circuit in external clock mode 1

	15.4.5 Capture/compare channels
	Figure 171. Capture/compare channel (example: channel 1 input stage)
	Figure 172. Capture/compare channel 1 main circuit
	Figure 173. Output stage of capture/compare channel (channel 1)
	Figure 174. Output stage of capture/compare channel (channel 2 for TIM15)

	15.4.6 Input capture mode
	15.4.7 PWM input mode (only for TIM15)
	Figure 175. PWM input mode timing

	15.4.8 Forced output mode
	15.4.9 Output compare mode
	Figure 176. Output compare mode, toggle on OC1.

	15.4.10 PWM mode
	Figure 177. Edge-aligned PWM waveforms (ARR=8)

	15.4.11 Complementary outputs and dead-time insertion
	Figure 178. Complementary output with dead-time insertion.
	Figure 179. Dead-time waveforms with delay greater than the negative pulse.
	Figure 180. Dead-time waveforms with delay greater than the positive pulse.

	15.4.12 Using the break function
	Figure 181. Output behavior in response to a break.

	15.4.13 One-pulse mode
	Figure 182. Example of one pulse mode.

	15.4.14 TIM15 and external trigger synchronization (only for TIM15)
	Figure 183. Control circuit in reset mode
	Figure 184. Control circuit in gated mode
	Figure 185. Control circuit in trigger mode

	15.4.15 Timer synchronization
	15.4.16 Debug mode

	15.5 TIM15 registers
	15.5.1 TIM15 control register 1 (TIM15_CR1)
	15.5.2 TIM15 control register 2 (TIM15_CR2)
	15.5.3 TIM15 slave mode control register (TIM15_SMCR)
	Table 79. TIMx Internal trigger connection

	15.5.4 TIM15 DMA/interrupt enable register (TIM15_DIER)
	15.5.5 TIM15 status register (TIM15_SR)
	15.5.6 TIM15 event generation register (TIM15_EGR)
	15.5.7 TIM15 capture/compare mode register 1 (TIM15_CCMR1)
	15.5.8 TIM15 capture/compare enable register (TIM15_CCER)
	Table 80. Output control bits for complementary OCx and OCxN channels with break feature

	15.5.9 TIM15 counter (TIM15_CNT)
	15.5.10 TIM15 prescaler (TIM15_PSC)
	15.5.11 TIM15 auto-reload register (TIM15_ARR)
	15.5.12 TIM15 repetition counter register (TIM15_RCR)
	15.5.13 TIM15 capture/compare register 1 (TIM15_CCR1)
	15.5.14 TIM15 capture/compare register 2 (TIM15_CCR2)
	15.5.15 TIM15 break and dead-time register (TIM15_BDTR)
	15.5.16 TIM15 DMA control register (TIM15_DCR)
	15.5.17 TIM15 DMA address for full transfer (TIM15_DMAR)
	15.5.18 TIM15 register map
	Table 81. TIM15 register map and reset values

	15.6 TIM16&TIM17 registers
	15.6.1 TIM16&TIM17 control register 1 (TIMx_CR1)
	15.6.2 TIM16&TIM17 control register 2 (TIMx_CR2)
	15.6.3 TIM16&TIM17 DMA/interrupt enable register (TIMx_DIER)
	15.6.4 TIM16&TIM17 status register (TIMx_SR)
	15.6.5 TIM16&TIM17 event generation register (TIMx_EGR)
	15.6.6 TIM16&TIM17 capture/compare mode register 1 (TIMx_CCMR1)
	15.6.7 TIM16&TIM17 capture/compare enable register (TIMx_CCER)
	Table 82. Output control bits for complementary OCx and OCxN channels with break feature

	15.6.8 TIM16&TIM17 counter (TIMx_CNT)
	15.6.9 TIM16&TIM17 prescaler (TIMx_PSC)
	15.6.10 TIM16&TIM17 auto-reload register (TIMx_ARR)
	15.6.11 TIM16&TIM17 repetition counter register (TIMx_RCR)
	15.6.12 TIM16&TIM17 capture/compare register 1 (TIMx_CCR1)
	15.6.13 TIM16&TIM17 break and dead-time register (TIMx_BDTR)
	15.6.14 TIM16&TIM17 DMA control register (TIMx_DCR)
	15.6.15 TIM16&TIM17 DMA address for full transfer (TIMx_DMAR)
	15.6.16 TIM16&TIM17 register map
	Table 83. TIM16&TIM17 register map and reset values

	16 Basic timers (TIM6 and TIM7)
	16.1 TIM6 and TIM7 introduction
	16.2 TIM6 and TIM7 main features
	Figure 186. Basic timer block diagram

	16.3 TIM6 and TIM7 functional description
	16.3.1 Time-base unit
	Figure 187. Counter timing diagram with prescaler division change from 1 to 2
	Figure 188. Counter timing diagram with prescaler division change from 1 to 4

	16.3.2 Counting mode
	Figure 189. Counter timing diagram, internal clock divided by 1
	Figure 190. Counter timing diagram, internal clock divided by 2
	Figure 191. Counter timing diagram, internal clock divided by 4
	Figure 192. Counter timing diagram, internal clock divided by N
	Figure 193. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 194. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	16.3.3 Clock source
	Figure 195. Control circuit in normal mode, internal clock divided by 1

	16.3.4 Debug mode

	16.4 TIM6 and TIM7 registers
	16.4.1 TIM6 and TIM7 control register 1 (TIMx_CR1)
	16.4.2 TIM6 and TIM7 control register 2 (TIMx_CR2)
	16.4.3 TIM6 and TIM7 DMA/Interrupt enable register (TIMx_DIER)
	16.4.4 TIM6 and TIM7 status register (TIMx_SR)
	16.4.5 TIM6 and TIM7 event generation register (TIMx_EGR)
	16.4.6 TIM6 and TIM7 counter (TIMx_CNT)
	16.4.7 TIM6 and TIM7 prescaler (TIMx_PSC)
	16.4.8 TIM6 and TIM7 auto-reload register (TIMx_ARR)
	16.4.9 TIM6 and TIM7 register map
	Table 84. TIM6 and TIM7 register map and reset values

	17 Real-time clock (RTC)
	17.1 RTC introduction
	17.2 RTC main features
	17.3 RTC functional description
	17.3.1 Overview
	Figure 196. RTC simplified block diagram

	17.3.2 Resetting RTC registers
	17.3.3 Reading RTC registers
	17.3.4 Configuring RTC registers
	17.3.5 RTC flag assertion
	Figure 197. RTC second and alarm waveform example with PR=0003, ALARM=00004
	Figure 198. RTC overflow waveform example with PR=0003

	17.4 RTC registers
	17.4.1 RTC control register high (RTC_CRH)
	17.4.2 RTC control register low (RTC_CRL)
	17.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL)
	17.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL)
	17.4.5 RTC counter register (RTC_CNTH / RTC_CNTL)
	17.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL)
	17.4.7 RTC register map
	Table 85. RTC register map and reset values

	18 Independent watchdog (IWDG)
	18.1 IWDG introduction
	18.2 IWDG main features
	18.3 IWDG functional description
	18.3.1 Hardware watchdog
	18.3.2 Register access protection
	18.3.3 Debug mode
	Figure 199. Independent watchdog block diagram
	Table 86. Min/max IWDG timeout period (in ms) at 40 kHz (LSI)

	18.4 IWDG registers
	18.4.1 Key register (IWDG_KR)
	18.4.2 Prescaler register (IWDG_PR)
	18.4.3 Reload register (IWDG_RLR)
	18.4.4 Status register (IWDG_SR)
	18.4.5 IWDG register map
	Table 87. IWDG register map and reset values

	19 Window watchdog (WWDG)
	19.1 WWDG introduction
	19.2 WWDG main features
	19.3 WWDG functional description
	Figure 200. Watchdog block diagram

	19.4 How to program the watchdog timeout
	Figure 201. Window watchdog timing diagram
	Table 88. Minimum and maximum timeout values @24 MHz (fPCLK1)

	19.5 Debug mode
	19.6 WWDG registers
	19.6.1 Control register (WWDG_CR)
	19.6.2 Configuration register (WWDG_CFR)
	19.6.3 Status register (WWDG_SR)
	19.6.4 WWDG register map
	Table 89. WWDG register map and reset values

	20 Flexible static memory controller (FSMC)
	20.1 FSMC main features
	20.2 Block diagram
	Figure 202. FSMC block diagram

	20.3 AHB interface
	20.3.1 Supported memories and transactions

	20.4 External device address mapping
	Figure 203. FSMC memory banks
	20.4.1 NOR/PSRAM address mapping
	Table 90. NOR/PSRAM bank selection
	Table 91. External memory address

	20.5 NOR flash/PSRAM controller
	Table 92. Programmable NOR/PSRAM access parameters
	20.5.1 External memory interface signals
	Table 93. Nonmultiplexed I/O NOR flash
	Table 94. Multiplexed I/O NOR flash
	Table 95. Nonmultiplexed I/Os PSRAM/SRAM
	Table 96. Multiplexed I/O PSRAM

	20.5.2 Supported memories and transactions
	Table 97. NOR flash/PSRAM controller: example of supported memories and transactions

	20.5.3 General timing rules
	20.5.4 NOR flash/PSRAM controller asynchronous transactions
	Figure 204. Mode1 read accesses
	Figure 205. Mode1 write accesses
	Table 98. FSMC_BCRx bit fields
	Table 99. FSMC_BTRx bit fields
	Figure 206. ModeA read accesses
	Figure 207. ModeA write accesses
	Table 100. FSMC_BCRx bit fields
	Table 101. FSMC_BTRx bit fields
	Table 102. FSMC_BWTRx bit fields
	Figure 208. Mode2 and mode B read accesses
	Figure 209. Mode2 write accesses
	Figure 210. Mode B write accesses
	Table 103. FSMC_BCRx bit fields
	Table 104. FSMC_BTRx bit fields
	Table 105. FSMC_BWTRx bit fields
	Figure 211. Mode C read accesses
	Figure 212. Mode C write accesses
	Table 106. FSMC_BCRx bit fields
	Table 107. FSMC_BTRx bit fields
	Table 108. FSMC_BWTRx bit fields
	Figure 213. Mode D read accesses
	Figure 214. Mode D write accesses
	Table 109. FSMC_BCRx bit fields
	Table 110. FSMC_BTRx bit fields
	Table 111. FSMC_BWTRx bit fields
	Figure 215. Multiplexed read accesses
	Figure 216. Multiplexed write accesses
	Table 112. FSMC_BCRx bit fields
	Table 113. FSMC_BTRx bit fields
	Figure 217. Asynchronous wait during a read access
	Figure 218. Asynchronous wait during a write access

	20.5.5 Synchronous transactions
	Figure 219. Wait configurations
	Figure 220. Synchronous multiplexed read mode - NOR, PSRAM (CRAM)
	Table 114. FSMC_BCRx bit fields
	Table 115. FSMC_BTRx bit fields
	Figure 221. Synchronous multiplexed write mode - PSRAM (CRAM)
	Table 116. FSMC_BCRx bit fields
	Table 117. FSMC_BTRx bit fields

	20.5.6 NOR/PSRAM control registers
	20.5.7 FSMC register map
	Table 118. FSMC register map

	21 Serial peripheral interface (SPI)
	21.1 SPI introduction
	21.2 SPI main features
	21.2.1 SPI features

	21.3 SPI functional description
	21.3.1 General description
	Figure 222. SPI block diagram
	Figure 223. Single master/ single slave application
	Figure 224. Data clock timing diagram

	21.3.2 Configuring the SPI in slave mode
	21.3.3 Configuring the SPI in master mode
	21.3.4 Configuring the SPI for half-duplex communication
	21.3.5 Data transmission and reception procedures
	Figure 225. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 226. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in case of continuous transfers
	Figure 227. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 228. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 229. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1) in case of continuous transfers
	Figure 230. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0) in case of discontinuous transfers

	21.3.6 CRC calculation
	21.3.7 Status flags
	21.3.8 Disabling the SPI
	21.3.9 SPI communication using DMA (direct memory addressing)
	Figure 231. Transmission using DMA
	Figure 232. Reception using DMA

	21.3.10 Error flags
	21.3.11 SPI interrupts
	Table 119. SPI interrupt requests

	21.4 SPI registers
	21.4.1 SPI control register 1 (SPI_CR1)
	21.4.2 SPI control register 2 (SPI_CR2)
	21.4.3 SPI status register (SPI_SR)
	21.4.4 SPI data register (SPI_DR)
	21.4.5 SPI CRC polynomial register (SPI_CRCPR)
	21.4.6 SPI RX CRC register (SPI_RXCRCR)
	21.4.7 SPI TX CRC register (SPI_TXCRCR)
	21.4.8 SPI register map
	Table 120. SPI register map and reset values

	22 Inter-integrated circuit (I2C) interface
	22.1 I2C introduction
	22.2 I2C main features
	22.3 I2C functional description
	22.3.1 Mode selection
	Figure 233. I2C bus protocol
	Figure 234. I2C block diagram

	22.3.2 I2C slave mode
	Figure 235. Transfer sequence diagram for slave transmitter
	Figure 236. Transfer sequence diagram for slave receiver

	22.3.3 I2C master mode
	Figure 237. Transfer sequence diagram for master transmitter
	Figure 238. Method 1: transfer sequence diagram for master receiver
	Figure 239. Method 2: transfer sequence diagram for master receiver when N>2
	Figure 240. Method 2: transfer sequence diagram for master receiver when N=2
	Figure 241. Method 2: transfer sequence diagram for master receiver when N=1

	22.3.4 Error conditions
	22.3.5 SDA/SCL line control
	22.3.6 SMBus
	Table 121. SMBus vs. I2C

	22.3.7 DMA requests
	22.3.8 Packet error checking

	22.4 I2C interrupts
	Table 122. I2C Interrupt requests
	Figure 242. I2C interrupt mapping diagram

	22.5 I2C debug mode
	22.6 I2C registers
	22.6.1 I2C Control register 1 (I2C_CR1)
	22.6.2 I2C Control register 2 (I2C_CR2)
	22.6.3 I2C Own address register 1 (I2C_OAR1)
	22.6.4 I2C Own address register 2 (I2C_OAR2)
	22.6.5 I2C Data register (I2C_DR)
	22.6.6 I2C Status register 1 (I2C_SR1)
	22.6.7 I2C Status register 2 (I2C_SR2)
	22.6.8 I2C Clock control register (I2C_CCR)
	22.6.9 I2C TRISE register (I2C_TRISE)
	22.6.10 I2C register map
	Table 123. I2C register map and reset values

	23 Universal synchronous asynchronous receiver transmitter (USART)
	23.1 USART introduction
	23.2 USART main features
	23.3 USART functional description
	Figure 243. USART block diagram
	23.3.1 USART character description
	Figure 244. Word length programming

	23.3.2 Transmitter
	Figure 245. Configurable stop bits
	Figure 246. TC/TXE behavior when transmitting

	23.3.3 Receiver
	Figure 247. Start bit detection when oversampling by 16 or 8
	Figure 248. Data sampling when oversampling by 16
	Figure 249. Data sampling when oversampling by 8
	Table 124. Noise detection from sampled data

	23.3.4 Fractional baud rate generation
	Table 125. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16
	Table 126. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz, oversampling by 8
	Table 127. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16
	Table 128. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8

	23.3.5 USART receiver tolerance to clock deviation
	Table 129. USART receiver’s tolerance when DIV fraction is 0
	Table 130. USART receiver tolerance when DIV_Fraction is different from 0

	23.3.6 Multiprocessor communication
	Figure 250. Mute mode using Idle line detection
	Figure 251. Mute mode using address mark detection

	23.3.7 Parity control
	Table 131. Frame formats

	23.3.8 LIN (local interconnection network) mode
	Figure 252. Break detection in LIN mode (11-bit break length - LBDL bit is set)
	Figure 253. Break detection in LIN mode vs. Framing error detection

	23.3.9 USART synchronous mode
	Figure 254. USART example of synchronous transmission
	Figure 255. USART data clock timing diagram (M=0)
	Figure 256. USART data clock timing diagram (M=1)
	Figure 257. RX data setup/hold time

	23.3.10 Single-wire half-duplex communication
	23.3.11 Smartcard
	Figure 258. ISO 7816-3 asynchronous protocol
	Figure 259. Parity error detection using the 1.5 stop bits

	23.3.12 IrDA SIR ENDEC block
	Figure 260. IrDA SIR ENDEC- block diagram
	Figure 261. IrDA data modulation (3/16) -Normal mode

	23.3.13 Continuous communication using DMA
	Figure 262. Transmission using DMA
	Figure 263. Reception using DMA

	23.3.14 Hardware flow control
	Figure 264. Hardware flow control between 2 USARTs
	Figure 265. RTS flow control
	Figure 266. CTS flow control

	23.4 USART interrupts
	Table 132. USART interrupt requests
	Figure 267. USART interrupt mapping diagram

	23.5 USART mode configuration
	Table 133. USART mode configuration

	23.6 USART registers
	23.6.1 Status register (USART_SR)
	23.6.2 Data register (USART_DR)
	23.6.3 Baud rate register (USART_BRR)
	23.6.4 Control register 1 (USART_CR1)
	23.6.5 Control register 2 (USART_CR2)
	23.6.6 Control register 3 (USART_CR3)
	23.6.7 Guard time and prescaler register (USART_GTPR)
	23.6.8 USART register map
	Table 134. USART register map and reset values

	24 High-definition multimedia interface-consumer electronics control controller (HDMI™-CEC)
	24.1 Introduction
	24.2 HDMI-CEC main features
	24.3 HDMI-CEC bus topology
	24.3.1 HDMI-CEC pin
	Table 135. HDMI pin
	Figure 268. CEC line connection

	24.3.2 Message description
	Figure 269. Message structure
	Figure 270. Blocks

	24.3.3 Bit timing
	Figure 271. Bit timings
	Figure 272. Follower acknowledge (ACK)

	24.4 Arbitration
	24.4.1 Signal free time (SFT)
	Figure 273. Signal free time
	Table 136. Signal free time definition

	24.4.2 Header arbitration
	Figure 274. Arbitration phase

	24.5 Error handling
	24.5.1 BTE, BPE and Error bit generation
	Figure 275. Error bit timing

	24.5.2 Message error

	24.6 Device addressing
	24.7 HDMI-CEC functional description
	24.7.1 Block diagram
	Figure 276. HDMI-CEC block diagram

	24.7.2 Prescaler
	24.7.3 Rx digital filter
	24.7.4 Rx bit timing
	Figure 277. Bit timing
	Table 137. Bit status depending on the low bit duration (LBD)
	Table 138. Bit status depending on the total bit duration (TBD)

	24.7.5 Tx bit timing
	Figure 278. Tx bit timing

	24.7.6 CEC arbiter
	Table 139. STM32 CEC arbitration

	24.7.7 CEC states
	Figure 279. CEC control state machine
	Figure 280. Example of a complete message reception
	Table 140. Software sequence to respect when receiving a message
	Figure 281. Example of a complete message transmission
	Table 141. Software sequence to respect when transmitting a message
	Figure 282. Example of a message transmission with transmission error
	Table 142. Software sequence to respect when transmitting a message

	24.7.8 CEC and system Stop mode
	Figure 283. CEC and system Stop mode

	24.8 HDMI-CEC interrupts
	Table 143. HDMI-CEC interrupts

	24.9 HDMI-CEC registers
	24.9.1 CEC configuration register (CEC_CFGR)
	24.9.2 CEC own address register (CEC_OAR)
	24.9.3 CEC prescaler register (CEC_PRES)
	24.9.4 CEC error status register (CEC_ESR)
	24.9.5 CEC control and status register (CEC_CSR)
	24.9.6 CEC Tx data register (CEC_TXD)
	24.9.7 CEC Rx data register (CEC_RXD)
	24.9.8 HDMI-CEC register map
	Table 144. HDMI-CEC register map and reset values

	25 Debug support (DBG)
	25.1 Overview
	Figure 284. Block diagram of STM32 MCU and Cortex®-M3-level debug support

	25.2 Reference Arm® documentation
	25.3 SWJ debug port (serial wire and JTAG)
	Figure 285. SWJ debug port
	25.3.1 Mechanism to select the JTAG-DP or the SW-DP

	25.4 Pinout and debug port pins
	25.4.1 SWJ debug port pins
	Table 145. SWJ debug port pins

	25.4.2 Flexible SWJ-DP pin assignment
	Table 146. Flexible SWJ-DP pin assignment

	25.4.3 Internal pull-up and pull-down on JTAG pins
	25.4.4 Using serial wire and releasing the unused debug pins as GPIOs

	25.5 STM32F100xx JTAG TAP connection
	Figure 286. JTAG TAP connections

	25.6 ID codes and locking mechanism
	25.6.1 MCU device ID code
	25.6.2 Boundary scan TAP
	25.6.3 Cortex®-M3 TAP
	25.6.4 Cortex®-M3 JEDEC-106 ID code

	25.7 JTAG debug port
	Table 147. JTAG debug port data registers
	Table 148. 32-bit debug port registers addressed through the shifted value A[3:2]

	25.8 SW debug port
	25.8.1 SW protocol introduction
	25.8.2 SW protocol sequence
	Table 149. Packet request (8-bits)
	Table 150. ACK response (3 bits)
	Table 151. DATA transfer (33 bits)

	25.8.3 SW-DP state machine (reset, idle states, ID code)
	25.8.4 DP and AP read/write accesses
	25.8.5 SW-DP registers
	Table 152. SW-DP registers

	25.8.6 SW-AP registers

	25.9 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP
	Table 153. Cortex®-M3 AHB-AP registers

	25.10 Core debug
	Table 154. Core debug registers

	25.11 Capability of the debugger host to connect under system reset
	25.12 FPB (Flash patch breakpoint)
	25.13 DWT (data watchpoint trigger)
	25.14 ITM (instrumentation trace macrocell)
	25.14.1 General description
	25.14.2 Time stamp packets, synchronization and overflow packets
	Table 155. Main ITM registers

	25.15 MCU debug component (DBGMCU)
	25.15.1 Debug support for low-power modes
	25.15.2 Debug support for timers, watchdog and I2C
	25.15.3 Debug MCU configuration register

	25.16 TPIU (trace port interface unit)
	25.16.1 Introduction
	Figure 287. TPIU block diagram

	25.16.2 TRACE pin assignment
	Table 156. Asynchronous TRACE pin assignment
	Table 157. Synchronous TRACE pin assignment
	Table 158. Flexible TRACE pin assignment

	25.16.3 TPUI formatter
	25.16.4 TPUI frame synchronization packets
	25.16.5 Transmission of the synchronization frame packet
	25.16.6 Synchronous mode
	25.16.7 Asynchronous mode
	25.16.8 TRACECLKIN connection inside the STM32F100xx
	25.16.9 TPIU registers
	Table 159. Important TPIU registers

	25.16.10 Example of configuration

	25.17 DBG register map
	Table 160. Value DBG register map and reset values

	26 Device electronic signature
	26.1 Memory size registers
	26.1.1 Flash size register

	26.2 Unique device ID register (96 bits)

	27 Important security notice
	28 Revision history
	Table 161. Document revision history

